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Abstract
Diversity is crucial to reducing the word error rate (WER) when
fusing multiple automatic speech recognition (ASR) systems.
We present an empirical analysis linking diversity and fusion
performance. We transcribed speech from the first 2012 US
Presidential debate using multiple ASR systems trained with
the Kaldi toolkit. We used the N-best ROVER algorithm to per-
form hypothesis fusion and measured N-best diversity by the
average pairwise WER. We make three key observations. We
first note that the WER of the fused hypothesis decreases sig-
nificantly with increasing diversity of the N-best list. This de-
crease is greater than the decrease in WER of the oracle hypoth-
esis in the list. N-best lists from systems trained on different
data sets are the most diverse and give the lowest WER upon
fusion. We then observe that the benefit of diversity depends
on the choice of the fusion scheme. We show that confidence-
weighted ROVER is able to better exploit diversity than un-
weighted ROVER and gives lower WERs. We finally explain
the above observations by a simple linear relation linking diver-
sity to the ROVER WER. This relation depends on the fusion
scheme and also reveals the tradeoff between diversity and av-
erage WER of hypotheses in the N-best list.
Index Terms: automatic speech recognition, diversity, system
combination, ROVER, ensemble methods

1. Introduction
System combination is a widespread practice in automatic
speech recognition (ASR) research. Many large-scale projects
such as DARPA GALE [1], TRANSTAC [2], EARS [3], and
CALO [4] have utilized ensembles of ASR systems. The fused
ensemble system often provides lower word error rate (WER)
than the individual systems and better generalization to unseen
audio data. Diversity of the ASR systems is a desirable char-
acteristic to achieve lower WER upon fusion as noted in [1–4]
and other works. Figure 1 illustrates a non-diverse and a diverse
3-best list. The diverse 3-best list in Figure 1(b) contains hy-
potheses with complementary errors and can thus benefit more
from a suitable fusion scheme.

Many works have explored formally the benefits of ensem-
ble diversity in machine learning [5–9]. Researchers have also
developed a range of methods for training diverse ASR sys-
tems, mainly guided by empirical investigations. The simplest
approach is to use diverse data sets and acoustic features for
training the ASR systems. Other works [10–14] use machine
learning techniques such as bagging [15], boosting [16, 17] and
random forests [18] to train diverse ASR systems. Breslin [19]
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Figure 1: This figure shows a set of (a) non-diverse and (b)
diverse 3-best lists. Red (dark) segments indicate a word er-
ror with respect to a reference transcript while the white (light)
ones show correct recognition. Both (a) and (b) have the same
number of errors but the hypotheses in (b) make more comple-
mentary errors. A suitable combination scheme can thus reduce
the WER by using the 3-best list in (b).

provides a comprehensive review of these techniques. Diverse
hypotheses are also prevalent in other speech and language pro-
cessing tasks. These include transcription of speech data by
workers on crowd-sourcing services such as Amazon Mechani-
cal Turk [20–26]. The advantage herein is that while any single
transcription by itself may not be perfect, an appropriate com-
bination of diverse set of transcriptions can boost accuracy.

Not many previous works have explicitly addressed the link
between hypothesis diversity and fusion performance despite
significant interest in training and fusing diverse ASR systems.
This paper empirically investigates this important link. We tran-
scribed speech from the first 2012 US Presidential debate using
multiple ASR systems trained with the Kaldi toolkit [27]. We
then conducted fusion experiments using the N-best ROVER al-
gorithm [28]. We used the average pairwiseWER for estimating
the diversity of an N-best list. Our key observation is that

ROVER WER ≈ Avg. N-best WER− γ(N-best Diversity)
(1)

where γ > 0 is a constant which depends on the N-best list
and the ROVER scheme used, as discussed in Section 3.1. −γ

approximates the change in ROVER WER with a unit change
in N-best diversity keeping the average N-best WER constant.
The linear expression on the right-hand side of (1) provides an
accurate estimate of the ROVER WER with nearly perfect cor-
relation and extremely low mean squared error. It also shows
the tradeoff between diversity and average N-best WER and ex-
plains the following observations in this paper:
1. The WER of the fused ROVER hypothesis reduces with
increasing diversity of the N-best list. This decrease is
greater than the decrease in WER of the oracle (lowest
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WER) hypothesis in the list. N-best list from a single
ASR is the least diverse and gives the least reduction
in WER over the 1-best WER upon fusion. N-best lists
from systems trained on different data sets are the most
diverse and give the greatest benefit inWER upon fusion.

2. Not all ROVER schemes are able to exploit the diver-
sity in an N-best list. A word confidence-aware fu-
sion gives significantly lower WER than the vanilla word
frequency-based ROVER.

The next section presents details of our experimental setup
- the ASR system training using Kaldi, the testing set, and the
variants of the N-best ROVER algorithm we used in this pa-
per. Section 3 discusses the experimental results and presents a
detailed analysis of the impact of diversity upon fusion perfor-
mance. We conclude the paper in Section 4.

2. Experimental Setup
We first give the details of the various ASR systems we trained
using the Kaldi toolkit.

2.1. ASR System Training Using the Kaldi Toolkit

The Kaldi toolkit [27] provides state-of-the-art open-source
tools for training ASR systems. It offers many advantages over
other ASR toolkits (e.g. HTK [29] and Sphinx [30]) such as
tight integration with finite state transducers (FSTs) using the
OpenFST toolkit [31], generic and extensible design, Apache
2.0 license, and recipes for various standard data sets. We used
data from theWall Street Journal (WSJ) [32], the HUB4 English
broadcast news [33], and the ICSI meeting [34] data sets.

We used the default Kaldi training recipe for WSJ to train
all ASR systems. This recipe uses the CMU pronunciation dic-
tionary and its phone set. It first computes Mel frequency cep-
stral coefficients (MFCCs) over 25 msec long speech frames
with a 10 msec shift. It then trains monophone models using
the Viterbi-EM algorithm. The recipe next aligns the training
data using these models and uses the resulting alignments to
train triphone models (M1). We used 2000 leaves for decision
tree clustering and 10000 total Gaussians.

We obtained the second system (M2) by using the align-
ments from the M1 models to perform Linear Discriminant
Analysis (LDA) and Maximum Likelihood Linear Transforma-
tion (MLLT) for increasing the discrimination between the var-
ious phones. We then discriminatively adapted the M2 acoustic
models using the Maximum Mutual Information (MMI) [35]
criterion which resulted in the final system (M3). Table 1 sum-
marizes the three systems.

ASR System Training Steps
M1 Triphone Viterbi-EM training
M2 M1→ LDA→MLLT
M3 M2→MMI

Table 1: This table summarizes the training steps for the three
ASR systems used in this paper for each of the WSJ, HUB4,
and ICSI data sets.

2.2. First 2012 US Presidential Debate Corpus and Generic
Presidential Debate Language Model

We downloaded the audio and reference transcriptions for the
first 2012 United States Presidential debate between President

Barack Obama (BO) and Governor Mitt Romney (MR) from the
National Public Radio (NPR) website1. This debate was held
at the Magness Arena of the University of Denver in Denver,
Colorado and was hosted by Mr. Jim Lehrer (JL). The audio is
approximately 90 minutes long.

We performed speaker diarization on this audio using the
system from [36] which uses voice activity detection followed
by correlation-based segmentation and hierarchical clustering.
This diarization system generated three clusters corresponding
to JL, BO, and MR. We did not manually correct the obtained
cluster labels. We then segmented the audio into clips up to
10 sec long for faster decoding. The number of utterances for
JL, BO, and MR were 107, 282, and 253 respectively. We
cleaned the debate transcripts by removing punctuation marks
and mapping numbers to words (e.g. “$5 trillion” to “five tril-
lion dollars”). We did not add any out-of-vocabulary (OOV)
words from the transcripts to the ASR pronunciation dictionary.

Text data from the three ASR data sets is inappropriate for
training the language models due to domain mismatch. We thus
obtained transcripts of all US Presidential and Vice-Presidential
debates from 1960-20122 excluding the testing set. These tran-
scripts contain approximately 0.5 million words and were used
to train a 4-gram LM with back-off using SRILM [37]. Ta-
ble 2 gives the WER of the 1-best (Viterbi) hypothesis for each
speaker in the testing set using various systems. We observe that
the systems trained on the HUB4 data set perform the best. The
M3 systems give the lowest WER in most cases. The debate
audio, transcripts, and LM are available here3.

2.3. N-best ROVER Fusion Schemes

The ROVER algorithm first aligns the hypotheses by minimiz-
ing the total cost of word insertion, deletion, and substitution
needed to make all hypotheses identical. The resulting word
confusion network contains a sequence of confusion bins each
represented as sets of confusing words between time segments.

Let wij denote the j-th unique word in the i-th confusion
bin with confidence cij ∈ [0, 1] and frequency fij ∈ [0, 1].
ROVER picks a word w∗

i for this bin using the following deci-
sion rule:

Weighted ROVER: w∗

i = arg max
wij

h
αfij + (1− α)cij

i
(2)

where α ∈ [0, 1] is the weight given to the word frequency
fij . ASR system confidence estimation is a challenging prob-
lem and has been the subject of several works [38–41]. Confi-
dence estimation systems often are not perfect, and hence not
desirable for the analysis of the diversity-fusion performance
link that we are exploring in this paper. Hence, we initially
use an oracle confidence estimator for our experiments to get
a lower bound on the analysis (we consider automatically esti-
mated confidence scores in Section 3.2). We align the hypothe-
sis word sequence with the reference transcript and set the con-
fidence score of the j-th hypothesis word wj as

Oracle Confidence: cj = I(wj is correct) (3)

where I is the indicator function. This oracle confidence finds
the lower bound on the WER after fusion using N-best ROVER.

1http://www.npr.org/2012/10/03/162258551/transcript-first-obama-
romney-presidential-debate

2http://www.debates.org/index.php?page=debate-transcripts
3sail.usc.edu/data.php
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1-best WERs
HUB4 WSJ ICSI

MR BO JL MR BO JL MR BO JL
M1 31.8 34.2 46 39.3 47.7 55.5 40.1 44.2 54.1
M2 29 30.4 44.1 37.1 44.3 59 35.1 41.3 54.8
M3 28.2 29.6 43.6 36 43.2 58.5 33.9 39.6 53.4

Table 2: This table summarizes the testing set 1-best WERs for various ASR systems. The systems trained on the HUB4 data set
provide the lowest WERs while those trained on the ICSI data set give the highest WER. M3 models perform the best out of the three
models trained for each data set except WSJ for speaker JL.

HUB4 WSJ ICSI WSJ + HUB4 + ICSI
MR BO JL MR BO JL MR BO JL MR BO JL

10-best Unweighted ROVERWERs
M1 31.7 33.9 45.7 39.2 47.7 55.3 39.9 44.1 53.8 33 36.9 48
M2 29 30.4 43.9 37 44.3 58.6 35.3 41.1 54.6 30.3 34.1 48.1
M3 28 29.7 43.4 35.8 42.8 58.1 33.9 39.4 52.8 29.2 32.9 46.3

M1 + M2 + M3 28 30 43.6 35.9 41.7 55.1 34.3 39.3 50.7 29.5 32.2 44.6
10-best Oracle Confidence-Weighted ROVERWERs (α = 0.65, picked using cross-validation)
M1 28.7 31.6 43.2 36.2 45.1 52.6 37 41.8 50.9 26.3 30.3 41.5
M2 25.9 28.2 41.4 34.4 41.7 56.5 32.5 38.7 51.3 23.9 27.5 40.8
M3 24.9 27. 1 40.8 33.2 40.7 56.0 30.6 36.9 50.9 22.8 25.9 39.7

M1 + M2 + M3 24.8 26.9 39.9 30.7 37.6 49.5 29.6 35.5 47.1 22.6 25.2 38.2

Table 3: This table summarizes the testing set WERs for various ASR systems after 10-best ROVER under various conditions. ’+’
denotes fusion of N-best list across training data sets and/or systems. E.g. the M1 + M2 + M3 row for the WSJ data set indicates that
we fused the top-3 hypotheses from the M1, M2, and M3 models before performing ROVER. Confidence-weighted ROVER performs
better than both unweighted ROVER and the lowest WER (oracle) hypothesis in the N-best list. We have not included the WERs for
the latter in this table due to lack of space.

Setting α = 1 gives the unweighted ROVER which does
not use any word confidence scores.

Unweighted ROVER: w
∗

i = arg max
wij

fij . (4)

Most works on ASR system ensembles use this unweighted
variant. We next present our experiments and analysis.

3. Experiments and Analysis
Table 3 shows the testing set WERs for various system combi-
nations using 10-best ROVER.We created the merged 10-best
list by picking equal number of top hypothesis from the indi-
vidual 10-best lists. For example, the fused N-best list for the
M1 + M2 + M3 results using the WSJ data set was created by
taking the top 3 hypotheses from each individual list. We also
show results when the top hypothesis from each of M1, M2, and
M3 models from the three training sets WSJ, HUB4, and ICSI
were merged to create a single 10-best list.

We present two sets of results using unweighted ROVER
and confidence-weighted ROVER. We make the following ob-
servations from Table 3:

1. Both unweighted and confidence-weighted 10-best
ROVER result in lower WER than the 1-best WERs in
Table 2. The former gives only a marginal improvement
over the 1-best WER while the latter gives a significant
improvement.

2. Confidence-weighted 10-best ROVER gives signifi-
cantly lower WER than 10-best unweighted ROVER.

3. Fusion of top 3 hypotheses from the M1, M2, and M3
(in the M1 + M2 + M3 rows of Table 3) systems results

in a significant WER reduction over individual systems
for confidence-weighted ROVER. However, it does not
always reduce the WER for unweighted ROVER.

4. Fusion of top 3 hypotheses from the WSJ, HUB4, and
ICSI data sets for each system (in the WSJ + HUB4
+ ICSI columns of Table 3) results in a significant
WER reduction over individual systems for confidence-
weighted ROVER. It is also better than individual data
set-dependent systems when using confidence-weighted
ROVER. But this is not necessarily the case for un-
weighted ROVER.

5. Fusion of the top hypothesis fromWSJ, HUB4, and ICSI
across the three systems (M1, M2, and M3) gives the
lowestWER (bottom-right corner of Table 3) when using
confidence-weighted ROVER.

The above observations from Table 3 indicate a link be-
tween the diversity of the N-best list being fused and the choice
of fusion scheme. We discuss it in the next subsection.

3.1. Diversity-Fusion Performance Link

We first define the diversity of an N-best list of word hy-
potheses before exploring its link with the decision rule. Let
H = {h1, . . . , hN} be a set of hypothesis sentences in an N-
best list. The average pairwise WER of the list defined as

D(H) =
2

N(N − 1)

NX
n=1

X
m>n

E(hn, hm) (5)

is an intuitive measure of the diversity of the N-best list where
E computes the WER between two hypotheses. D is closely re-
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Figure 2: This figure shows the plot between the WER after confidence-weighted 10-best ROVER fusion (α = 0.65) and an optimal
linear combination of the average 10-best WER and the diversity for various ASR systems. We found the estimated γ = 0.42 to be
consistent in cross-validation. Average 10-best WER and diversity individually give much smaller correlation coefficients of 0.6779
and −0.6147 respectively with the ROVER WER. We observed similar trends for the other speakers and 10-best unweighted ROVER.

lated to the definition of diversity used for an ensemble of maxi-
mum entropy models in [42] and the later complementary phone
error objective function in [43]. [42] replaces E by the negative
cross-correlation between the class label posteriors from the in-
dividual models.

MR BO JL All
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Figure 3: This figure shows the coefficient γ of the diversity
term in (1) using an optimal linear combination of the average
N-best WER and the diversity for various ASR systems. The
estimated γ was consistent across cross-validation folds.

We performed a simple least squares linear regression to es-
timate the ROVERWER from the average N-best WER and the
N-best diversity D(H) for each speaker using the two ROVER
schemes. This enabled us to arrive at the following easily-
interpretable relation:

ROVER WER ≈ Average N-best WER− γ(N-best Diversity)

where γ > 0 is the weight of the diversity term. We found
that the above approximation is able to predict the true ROVER
WERwith a high correlation coefficient (≈ 1) and an extremely
low mean squared error. This is apparent from Figure 2 which
shows the scatter plot between the true confidence-weighted 10-
best ROVERWER (y-axis) and its optimal estimate (x-axis) for
various ASR systems using speech from speaker MR. We ob-
tained similar perfect correlation for other speakers using both

ROVER schemes. However, the average N-best WER and N-
best diversity individually don’t predict the ROVERWER well.

Figure 3 shows the estimated diversity term weight γ for
different cases. First, γ is always positive, which shows that
the ROVER WER reduces with increasing diversity. Second, γ
is significantly higher for 10-best confidence-weighted ROVER
than unweighted ROVER. This shows that the former exploits
N-best diversity much more than the latter.

3.2. The Importance of Accurate ASR Confidence Scores

Our experiments show that the N-best diversity is best exploited
by confidence-weighted ROVER. For example, an oracle con-
fidence estimator gives a 0.3-0.5% absolute drop in WER for
every 1% increase in N-best diversity. This makes accurate au-
tomatic ASR confidence estimation all the more important. We
conducted initial experiments with a simple maximum entropy
model-based confidence estimator. This estimator uses standard
confidence features from the word lattice, such as word poste-
rior probability and normalized AM and LM scores. It gave
a 5-10% absolute improvement in error classification accuracy
above chance. However, the estimated confidence scores gave
an insignificant improvement in WER after 10-best confidence-
weighted ROVER. This underscores the importance of accurate
confidence score estimation.

4. Conclusion and Future Work
We presented an empirical link between diversity of an N-best
list and the WER after ROVER fusion. ROVER WER is highly
correlated with a linear function of average N-best WER and
N-best diversity. This relation explains many of our empir-
ical observations, such as consistently better performance of
confidence-weighted ROVER and reduction in ROVER WER
with increasing N-best diversity. Our work shows that there is
great incentive for designing diverse ASR systems and accurate
confidence estimators. Future work should perform theoretical
analysis of the presented link and informed diversity-promoting
design of ASR systems.
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