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Delay Estimation in the Presence of Impulsive Noise
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Abstract—A new representation of audio noise signals is pro-
posed, based on symmetric���-stable (S���S) distributions in order
to better model the outliers that exist in real signals. This
representation addresses a shortcoming of the Gaussian model,
namely, the fact that it is not well suited for describing signals
with impulsive behavior. The���-stable and Gaussian methods are
used to model measured noise signals. It is demonstrated that the
���-stable distribution, which has heavier tails than the Gaussian
distribution, gives a much better approximation to real-world
audio signals.

The significance of these results is shown by considering the
time delay estimation (TDE) problem for source localization in
teleimmersion applications. In order to achieve robust sound
source localization, a novel time delay estimation approach is
proposed. It is based on fractional lower order statistics (FLOS),
which mitigate the effects of heavy-tailed noise. An improvement
in TDE performance is demonstrated using FLOS that is up to a
factor of four better than what can be achieved with second-order
statistics.

Index Terms—Microphone arrays, symmetric alpha-stable dis-
tributions, time delay estimation, wideband array signal process-
ing.

I. INTRODUCTION

T HE proliferation of integrated media technologies com-
bined with the steady increase of available computing

power and high-bandwidth networking infrastructure are be-
ginning to lay the ground for teleimmersion applications. The
ultimate goal of teleimmersion is to create the illusion of
proximity among multiple participants that are geographically
apart. In order to achieve this illusion, it is necessary to capture
and recreate all the necessary aural and visual cues that human
participants rely on.

In this paper we examine issues that relate to the robustness
of methods for localization of sound sources in teleimmersion
applications using microphone arrays. In particular, we are
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interested in identifying the location of a person speaking
in the presence of background room noise. One possible
application would be the capability to automatically steer a
camera in the direction of the speaker during a session with
multiple participants at each site. The presence of noise such
as door slams, chair creaks, computer hard drives, and objects
dropping (Fig. 1) causes such camera steering systems to turn
at every instance.

Several distributions exist that can be good candidates for
modeling audio noise signals such as the ones mentioned
above. The most common in the literature, and especially
in speech and audio signal processing, is the Gaussian dis-
tribution. The use of the Gaussian distribution is frequently
motivated by the physics of the problem, and in most cases
it ensures an analytical solution. This has led to the de-
velopment of numerous algorithms based on second-order
statistics. In recent years, further research into signal modeling
has led to the realization that many natural phenomena can
be better represented by distributions of a more impulsive
nature. One type of distribution that exhibits heavier tails than
the Gaussian is the class of-stable distributions. In 1993,
Nikias and Shao [1] gave an introductory review of-stable
distributions from a statistical signal processing viewpoint that
was followed by a book from the same authors in 1995 [2].
Alpha-stable distributions have been used to model diverse
phenomena such as random fluctuations of gravitational fields,
economic market indexes [3], and radar clutter [4]. More
recently, with the evolution of the World Wide Web, additional
areas of application of the-stable distributions have become
apparent. For example, Crovellaet al.have used the stable law
to model data file sizes on the Web [3], while Willingeret al.
used it to model network traffic [3].

The first half of this paper deals with the heavy tailed nature
of certain types of audio noise signals in typical reverberant
rooms. Sections II and III give an overview of the class of-
stable distributions and -stable parameter estimation, while
Section IV proceeds by fitting a Gaussian model to recorded
audio data. The same data is subsequently used to obtain the
best -stable fit and compare the relative accuracy of the two
models.

Next in this paper, we address the problem of sound
source localization. Source location information can be used
for tracking a moving sound source, steering a camera in
teleconferencing applications to follow the speaker, selectively
acquiring sound from a specific direction, improving hearing
aid devices, as well as reducing noise and reverberation.
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Fig. 1. Typical teleconference environment. Several instances of impulsive noise were recorded including a chair rolling, a pen dropping, and a
keyboard clicking.

Intersensortime delay estimation(TDE) is a method com-
monly used to estimate source location using bearing infor-
mation. TDE algorithms are well-suited to applications that
involve a single wideband sound source. This is due to their
low computational cost compared to high-resolution spectral
estimation techniques and their reduced sensitivity to noise
compared to the steered-beamformer locators.

Informative introductory tutorials on existing TDE methods
are given in a paper by Knapp and Carter [5] and in a
guest editorial by Carter [6]. A simple approach to estimate
the bearing information for localizing a sound source in
an enclosed space was proposed by Brandstein [7] in his
dissertation. The majority of TDE methods proposed so far,
especially for use in audio applications, assume a Gaussian
noise signal and thus use second- (or higher) order statistics
in order to locate the source. A drawback of second or
higher order methods is that they become suboptimal when
the signal deviates from the Gaussian assumption. Section V
gives an overview of the TDE problem, its mathematical
formulation, as well as the phase transform (PHAT) [5], [8] and
the proposed fractional lower order statistics-PHAT (FLOS-
PHAT) TDE methods. Finally, Section VI presents simulations
on the TDE problem using both methods. We show that when
the Gaussian noise assumption fails—and instead the-stable
distribution is a better approximation for the noise—then the

FLOS-PHAT algorithm achieves better detection performance
than the PHAT.

II. A LPHA-STABLE DISTRIBUTIONS

The -stable distribution, which can model phenomena
of an impulsive nature, is a generalization of the Gaussian
distribution and is appealing because of two main reasons.

• First, it satisfies thestability property,which states that
if , , and are -stable independent random
variables of the same distribution, then there existand

satisfying

(1)

where , , , and are constants and denotes
equality in distribution.

• Second, it satisfies thegeneralized central limit theorem
[2], [9], [10] stating: is -stable if and only if is
the limit in distribution of the sum

(2)

where , , , are i.i.d. r.v.’s and . Parameter
is real and is real and positive.
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Fig. 2. The tails of the probability density function of a symmetric�-stable
distribution for different values of�. The case of� = 2 being the less
impulsive case of Gaussian noise and� = 1 the more impulsive Cauchy
case. In all the above, the dispersion was kept constant at
 = 1.

There is no closed-form expression for the probability
density function of -stable distributions, but the characteristic
function is given by

sign (3)

where

if

if
(4)

sign
if
if
if

(5)

and

• is the characteristic exponentsatisfying .
The characteristic exponent controls the heaviness of the
tails of the density function. The tails are heavier, and thus
the noise more impulsive, for low values ofwhile for
a larger the distribution has a less impulsive behavior
(Figs. 2 and 3).

• is the location parameter( ). It corre-
sponds to the mean for and the median for

.
• is thedispersionparameter ( ), which determines

the spread of the density around its location parameter.
The dispersion behaves in a similar way to the variance
of the Gaussian density, and it is, in fact, equal to half
the variance when , the Gaussian case.

• is the index of symmetry ( ). When
, the distribution is symmetric around the location

parameter.

The case of , corresponds to the Gaussian
distribution, while , corresponds to the Cauchy
distribution. The density functions in these two cases are given
by

(6)

(7)

The impulsiveness of the-stable distribution can clearly be
seen in Fig. 3(a)–(c). However, when we take a closer look at
Fig. 3(d)–(f), the time series resulting from the three different
distributions does not seem very different. This encourages
the use of -stable distributions in situations where the noise
has been traditionally modeled as Gaussian, but where sudden
“spikes” might occur. For example, in an enclosed room,
sounds produced by pages turning, pens clicking, or objects
falling can give rise to the impulsiveness in the noise.

The class of -stable distributions does not possess finite
second (or higher) moments. In fact,-stable distributions with

have finite moments only for order lower than

Gaussian: (8)

References [1]–[3] and [10] treat the-stable theory further.
For the purposes of this paper, we will deal with the class of
symmetric -stable (S S) distributions ( ) with finite
mean, i.e., .

III. PARAMETER ESTIMATION FOR S S DISTRIBUTIONS

The possibility that heavy-tailed noise behavior may ade-
quately be described by the stable law gives rise to the need
for fast, simple, and efficient estimators of the alpha-stable
parameters (especially, the characteristic exponent,) from
real data. Several such estimators, compromising optimality
for the sake of computational efficiency, have been proposed
in the past. Among them, maximum likelihood methods de-
veloped by DuMouchel [11] and by Brorsen and Yang [12]
are asymptotically efficient, but difficult to compute. Paulson
et al. estimate the stable parameters by fitting the Fourier
transform of the data to the characteristic function [13], a
computationally intensive procedure. Hence, a number of
suboptimal but simple methods have been devised. Zolotarev
estimates the stable parameters by the method of moments, but
requires that the location parameter is known in advance [14].
Brockwell and Brown estimate with high efficiency in the
special case of . McCullogh [15] generalized the Famma
and Roll approach [16] to provide consistent estimators of
in the range [0.6, 2].

For audio signals, we will be dealing with symmetric
distributions and thus we can assume that the distribution will
be of the S S class. The two methods used in this paper to
estimate the and parameters are summarized below.

A. Positive-Order and Negative-Order
(Sinc) Function Estimator

The fractional lower order moment(FLOM) of an S S
variable with zero location parameter can be shown [2] to
be equal to

(9)
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Fig. 3. Sample time series of S�S random variables. The characteristic exponents are� = 1:2, � = 1:5, and� = 2:0 (Gaussian). The second row of
figures shows an enlargement of parts of the above row and demonstrates the similarities between the distributions.

where and

(10)

The above expression for theth-order moment of gives
rise to

(11)

where and therefore

sinc (12)

From (12), the value of can be estimated andcan then
be found using

(13)

B. Logarithm of an SS Process

Defining , it can be shown that the mean of
is given by

(14)

where is the Euler constant. The
variance of is given by

Var (15)

The estimation process involves solving (15) forand
substituting back into (14) to find.

IV. A LPHA-STABLE MODELING OF AUDIO SIGNALS

To demonstrate the -stable nature of audio noise signals,
several measurements were taken in a typical teleconferencing
room with dimensions 8.5 m (L) 7.0 m (W) 3.5 m (H).
The reverberation time was measured using the THX R2
analyzer and was found to be 0.5 s from 125 Hz to 4 kHz. We
used an AKG omnidirectional microphone whose signal was
fed to a Rane preamplifier and then to a Pentium II PC. The
microphone was at a distance of 2 m from the noise sources
during the recording.

The recorded sound signals were modeled by means of the
S S family of distributions. The Gaussian density was also
used to model the same data, so as to compare the Gaussian
and S S fitting. The two methods described in the previous
section—namely, thepositive-order and negative-order(or
sinc method) and the S S method—were used to estimate
the S S distribution parameters from the data.

Figs. 4 and 5 show theamplitude probability density(APD)
corresponding to the following.

• The real data. The sum of all the data whose amplitude
exceeds the horizontal axis value gives the APD graph.
The time series of the real signals is plotted above the
corresponding APD’s.

• A Gaussian distribution with the same variance and mean
as the data.

• An S S distribution whose parameters and were
estimated from the data under study.

Both the sinc method and the S S method consistently
gave the same estimates.

The failure of the Gaussian density to give a good approxi-
mation for the tails in the data is apparent in the APD graphs.

Authorized licensed use limited to: University of Southern California. Downloaded on May 7, 2009 at 17:07 from IEEE Xplore.  Restrictions apply.



GEORGIOUet al.: ALPHA-STABLE MODELING 295

Fig. 4. Time sequences of recorded signals and their associated APD’s. The upper two plots show two time sequences of signals recorded in a typical
teleconferencing room. The two lower plots are the amplitude probability densities calculated from the recorded signal, as well as the APD’s of the best
fit S�S and Gaussian distributions. The left signal contains noise produced due to a small roll of a chair, while the right signal contains noise produced
from footsteps. It is clear that the S�S gives a much better fit to the data than the Gaussian.

On the other hand, the-stable density follows the tail of the
data much more closely.

The curves shown in Fig. 6 demonstrate the-stable behav-
ior of the sound signals and are extracts from a much larger
sequence of estimates. The two sequences displayed here are
from recordings made in the room described previously with
three people present. The estimation ofwas performed for
each sequence using both the sinc method and theS S
method for comparison. As can be seen from the two pairs of
curves, both methods gave approximately the same estimates.
In one recording (denoted as Noise 1), the noise was due
to the air conditioning and a computer. In another recording
(denoted as Noise 2), the noise present was caused by a slight
movement of a chair, a pen drop, and the opening of a CD case.
As expected, the parameter of the measurements changes
with time, in agreement with the time-changing statistics of
the acoustic environment. The two sound recordings used to
generate Fig. 6 gave an average and ,
respectively, when a length of 22.7 s (10samples) was
considered. In addition to these recordings, we performed
measurements in several other environments such as a small
office and a living room. For most of these recordings,
the estimated characteristic exponent stabilized in the region
between and , which is well below the
Gaussian model ( ). In some cases, the noise exhibited
highly impulsive behavior as shown in Fig. 5 for a recording
of pages flipping.

It is important to note that if we treat speech as a random
signal and try to estimate over a large time interval, the

resulting value for several speech time series is in the range
of to . However, when we estimate using
smaller time intervals and then average, the speech signal has
a higher value of . This can be explained by the fact that the
speech signal is not random and thus tends to stay at a steady
power longer. This appears as a less impulsive behavior on
the small scale, but more impulsive on a longer time scale.

V. APPLICATION TO TDE

Numerous applications can be envisioned in which mi-
crophone array steering is desired. For example, in tele-
conferencing and telepresence systems it is often required
to automatically redirect a video camera so that the person
speaking is in the field-of-view [7]. This is achievable by bear-
ing estimation from a single or multiple microphone arrays.
Mahieuxet al. [17] present a microphone array for multimedia
workstations, which is desirable to provide spatially selective
speech acquisition as well as reduce noise and echo.

The localization of a source in audio applications has
an added complexity not commonly found in other array
processing fields such as radar, which arises from the wideband
nature of the signal. Additionally, the statistics are not known
a priori and they vary with time. For these reasons, the
most widely used sound source localization methods are the
least computationally intensive algorithms, which are based
on TDE. In this section we introduce a new method for TDE
based on FLOS of the received signals. We also examine the
behavior of the PHAT [5], [8] algorithm, which uses second-
order statistics, under stable noise.
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Fig. 5. Time sequences of recorded signals and their associated APD’s. The upper two plots show two time sequences of signals, the first recorded in a
typical teleconferencing room, and the second in a quiet office. The two lower plots are the amplitude probability densities calculated from the recorded data,
as well as the APD’s of the best fit S�S and Gaussian distributions. The sudden impulses in the right signal are due to the noise of pages turning.

Fig. 6. Estimated� values for the noise measured in a room with characteristics of a typical teleconference room. Two noise recordings are shown. The
impulsiveness of each was calculated using two different methods with resolution of 0.08 s and the signals were sampled at 44.1 kHz. It can be seen that the
value of� changes with time and in some cases approaches the Cauchy noise case (� = 1), while in other occasions follows the Gaussian (� = 2) model.
The ability to estimate the value of� in real time can offer a significant advantage in implementing near optimal algorithms.

A. Mathematical Formulation

Consider a two-element microphone array receiving signals
and

(16)

in which the noise components and are assumed
to be zero mean, uncorrelated with each other and the desired
speech signal , i.e.,

and

(17)
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Although most real-world noise signals are correlated, the
assumptions above are commonly used in the literature when
analytical solutions are desired.

The goal is to estimate the delayfrom measurements of
and , in order to be able to localize the sound source.

Transforming the measurements in the frequency domain, we
have that

(18)

The second-order cross-correlation function in the frequency
domain can then be found from (18). According to our
assumptions above, the signal-noise cross terms as well as
the noise cross term are zero

(19)

Phase Transform Method:A fast method to use for the
estimation of the delay between two signals is the PHAT
method [5], [8]. According to PHAT, the signal cross spectrum

is smoothed by a window inversely proportional to
the magnitude cross spectrum, i.e.,

(20)

which will, in turn, give a weighted cross correlation function

(21)

The inverse Fourier transform will result in a sharp peak in
the time domain corresponding to the delay. Although this
method was expected to be quite sensitive to noise, we found
as demonstrated by the simulations that it performed well even
for low SNR’s.

However, when the process deviates from the ideal Gaussian
assumption, and is better characterized by the-stable class
of distributions, performance degrades as will be demonstrated
in the simulations. To achieve better performance, we propose
a new TDE method based on FLOS, which is robust to heavy
noise environments.

B. TDE in Heavy-Tailed Noise—FLOS-PHAT

The covariationof two signals and is defined as

(22)

where is the unit circle, is the spectral measure of the
S S random vector ( ), is the dispersion parameter of
signal , satisfies , and is the
signed-power nonlinearity.

The covariation of complex jointly SS random variables
is not generally symmetric and has the following properties.

P1) If , , and are jointly S S, then

(23)

for any complex constants and .
P2) If and are independent and , , and are

jointly S S, then

(24)

for any complex constants, , and .
P3) If and are independent SS, then

(25)

Using covariation properties (23)–(25) and assuming that both
the noise and signal have the same distribution, we can now
form the covariation of the frequency domain measurement

(26)

where is the signal dispersion, which is a real and positive
number. From (22) we can see that the denominator is a
positive number and thus we can again define a smoothed
covariation measure

(27)

As in the PHAT transform case, the peak in the time domain
resulting from the inverse Fourier transform of will
correspond to the delay.

In the above expression, the signed-power nonlinearity has
been applied to only one of the two signals. A more robust
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measure that applies the signed-power nonlinearity to both
terms has been proposed by Nikias and Ma [18] to be the
fractional-order correlation functiondefined as

(28)

i.e.,

(29)

We define the FLOS-PHAT method as

(30)

whose inverse Fourier transform will again result in a sharp
peak in the time-domain, corresponding to. The moment has
to remain of order to be defined and thus under a
reasonable assumption that both signals are of the same nature,
we can choose . Note that when , the
method reduces to the PHAT method as described above.

VI. SIMULATION EXPERIMENTS

In this section, we test the performance of the above
algorithms for TDE by adding simulated noise to a real signal
obtained in the room described in Section IV. The noise was
generated artificially in order to allow us to control the signal-
to-noise ratio. In our experiments, the statistics of the real
audio recordings vary and must be estimated in real time.
Therefore, the TDE algorithm must be fast and able to adapt to
new data and statistics. The simple method suggested by this
paper is based on the use of blocks of data. All the data used in
the experiments described below was obtained using various
speech and music signals sampled at typical audio sampling
frequencies of 22.05 kHz and 44.1 kHz; thus a block of data
of about 1000 samples will introduce a maximum delay of
0.1 s in the time delay estimate. Using overlapping blocks
can decrease the delay even more. The algorithm used to
obtain the results below can be summarized as follows (see
Fig. 7).

• A block of 1024 samples is obtained (using a rectangular
window function) from each microphone and their FFT
is evaluated.

• The instantaneous second- ( ) and lower-order
( ) statistics (in the frequency domain) are estimated
from the data block.

• A weighted-average statistic is obtained. For example, in
the case of PHAT

(31)

The value of , theadaptation factor,(where )
determines the tradeoff between speed of adaptation of the
algorithm on new statistics (near 1) versus the memory
of the algorithm ( small).

• The PHAT or FLOS-PHAT algorithm is applied using the
appropriate weighted-average statistic evaluated in (31).

• Repeat.

Fig. 7. Block diagram of the proposed TDE algorithm.

An important point here is to define the SNR measure
used in this paper. Since power is not defined for-stable
distributions, the conventional definition of SNR cannot be
used. Two alternative definitions of SNR are used in literature
[19]. In this paper we use thegeneralized-SNR, defined as the
ratio of the signal average power to the dispersion of the noise
total in the finite interval of interest

GSNR (32)

We used four different GSNR values of 0, 6, 12, and
25 dB. The comparative values of the GSNR andeffective-
SNR—defined as the average signal power over the average
noise power in the finite interval of interest, for the specific
data used in Fig. 8—are given in Table I. The FLOS-PHAT
method employed constants in the expression for
the FLOS function [cf. (29)].

The results obtained were based on a set of Monte Carlo
runs. Each run starts with an arbitrary vector of statistics and
so the algorithm has to adapt to the statistics of the signal.
The algorithm converges very fast in about five to ten blocks
of data (depending on the GSNR) and then stabilizes until an
outlier appears in the noise. After the algorithm reaches steady
state, data is gathered to form a “hit/miss” performance curve.
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Fig. 8. Comparative performance of the PHAT and FLOS-PHAT methods. Dashed line: PHAT, solid line: FLOS-PHAT. Note, for example, the improvement
at GSNR= 12 dB and � = 1:3 which is approximately a factor of four. Performance is defined here as the number of correct over the total
number of time delay estimates.

TABLE I
CORRESPONDENCE OFGSNR TO EFFECTIVE-SNR. WE USED FOUR

DIFFERENT GSNR VALUES OF 0, 6, 12,AND 25 dB TO PRODUCE THE

SIMULATIONS OF FIG. 8. THE ASSOCIATED VALUES OF THE GSNR AND

EFFECTIVE-SNR—DEFINED AS THE AVERAGE SIGNAL POWER OVER

THE AVERAGE NOISE POWER IN THE FINITE INTERVAL OF INTEREST,

FOR THE SPECIFIC DATA USED IN FIG. 8—ARE GIVEN BELOW

In total, 4000 values for each point were considered to obtain
the curves in Fig. 8.

Fig. 8 shows that in impulsive noise conditions, the FLOS-
PHAT method greatly outperforms the PHAT method, some-
times by as much as a factor of four (e.g., at GSNR of 12 dB
and ). As expected, the PHAT outperforms FLOS-
PHAT only when the additive noise is Gaussian ( ). The
robust behavior of the introduced FLOS-PHAT method is also
apparent when looking at the transient TDE response when
outliers occur in the data as seen in Fig. 9. The performance
of the PHAT method, based on the time-averaged estimate of

, is greatly influenced by impulsive noise. This is due
to the fact that an impulsive noise component in the PHAT
algorithm remains unaffected while in the FLOS-PHAT it is
raised to a fractional power, an operation that limits the effect
of the outlier. The FLOS-PHAT method, under severe noise
conditions, can also produce a wrong time delay estimate.

However, due to the use of fractional lower order statistics, the
significance of the outliers is diminished and thus subsequent
estimates are less influenced. It should be noted that the
transient response shown in Fig. 9 was produced with SS
of , which gives an increased number of outliers.
This is not a measure of performance, but an indication of the
reaction of the two algorithms to outliers in the noise.

In the above simulations we tested FLOS-PHAT with
and showed that we can achieve better estimates

than the ones obtained by the original PHAT method that in
fact uses .

An interesting question is to determine how well this method
performs for different values of or rather what are the
appropriate values of to use for each value of. Several
simulations were performed in an attempt to find what this
value is. In all instances we assumed that and performed
the simulation for values of to (corresponding to
the PHAT method). Although it is clear that the performance
is much better at about when the noise is quite
impulsive ( 1 to 1.7), (cf. Fig. 10) it is difficult to draw
a clear conclusion as to where the best performance lies for
higher values of . However, we do expect that the value of

will be the optimal for . Finding the optimum
becomes even more difficult when the data used is from

a real speech signal since there is some impulsive behavior
in the speech itself, as we showed, which is nonstationary
and which influences that value. The simulations of Fig. 10
show how the performance (vertical axis) changes versus
(horizontal axis) for different .

As we can see, the optimum value ofand initially rises
slowly from about and then faster when .
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Fig. 9. Transient performance of the PHAT (top) and FLOS-PHAT (bottom) methods. Plots show the offset error from the correct TDE versus block
number. It can be seen that the FLOS-PHAT is more robust than the PHAT when the noise is impulsive. In the case of the PHAT algorithm, an impulsive
element in the noise creates a very large error in the statistics which takes a long time to revert, while in the case of the FLOS-PHAT the statistics are
influenced much less and the algorithm returns to its correct state much faster.

Fig. 10. TDE performance as a function ofp. Values range from� = 1 (top) to� = 2 (bottom) with resolutions� = 0:2 and� = 0:02. A performance
of one means that the TDE was correct at all instances, while zero means we had no correct TDE. For impulsive noises with� < 1:8 it is clear that the
performance gain by using FLOS-PHAT is significant.p is the fractional-power nonlinearity parameter of the FLOS-PHAT algorithm.
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At values closer to , the impulsiveness of the speech
signal starts to become significant, and thus we cannot see a
clear peak at , although we see the trend of an improved
performance for an increasing. As a conclusion, we could
say that since the performance improvement is expected to be
around 50% between 12 and 16 dB GSNR, it seems a logical
choice to keep our algorithm working at a low value of. Even
if we were to operate at the the performance degradation
would be negligible with a low value ofcompared to the gain
achieved at low . In situations where the noise characteristic
exponent and the GSNR where known stationary, an optimum
value of could be estimated. This is never the case with
audio signals, and therefore the value of to
is a reasonable choice for TDE.

VII. CONCLUSIONS

This paper has presented a better model for noise encoun-
tered in typical reverberant rooms. The model presented uses
the symmetric -stable class of distributions, of which the
Gaussian is a special case, and shows that noise in the room
tends to have a value of , which is lower than the
usually assumed Gaussian model.

Based on this observation, we have presented a new method
for adaptively steering microphone arrays in the presence
of S S noise. Our method, based on fractional lower order
statistics of the measurements, was tested to be better than the
second-order-based PHAT algorithm, while at the same time
adding little computational expense. It is a simple algorithm
that exhibits robust performance even for small values of
and can be applied to the “speaker tracking” problem.

The FLOS-PHAT time delay estimator that we introduced is
a class of methods parameterized byand . When ,
the conventional second-order PHAT algorithm is obtained as a
special case. By choosing the parametersand according to
the statistics of the underlying acoustical environment, we can
operate robustly close to a near optimal point. The comparison
in this paper between the PHAT and the FLOS-PHAT is
a demonstration of the advantages that the use of-stable
distributions and fractional lower order statistics can offer to
audio applications.
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Birkhäuser, 1998.

[4] P. Tsakalides, R. Raspanti, and C. L. Nikias, “Joint target angle
and Doppler estimation in stable impulsive interference,”IEEE Trans.
Aerosp. Electron. Syst.,vol. 32, Apr. 1999.

[5] C. H. Knapp and G. C. Carter, “The generalized correlation method
for estimation of time delay,”IEEE Trans. Acoust., Speech, Signal
Processing,vol. ASSP-24, pp. 320–327, Aug. 1976.

[6] G. C. Carter, “Guest editorial—Time delay estimation,”IEEE Trans.
Signal Processing,vol. ASSP-29, p. 461, June 1981.

[7] M. S. Brandstein, “A framework for speech source localization using
sensor arrays,” Ph.D. dissertation, Brown Univ., Providence, RI, May
1995.

[8] P. A. Petropulu and C. L. Nikias,Higher Order Spectral Analysis:
A Nonlinear Signal Processing Framework.Englewood Cliffs, NJ:
Prentice Hall Signal Processing Series, 1993.

[9] H. Stark and J. W. Woods,Probability, Random Processes and Esti-
mation Theory for Engineers,2nd ed. Englewood Cliffs, NJ: Prentice
Hall, 1994.

[10] G. Samorodnitsky and M. S. Taqqu,Stable Non-Gaussian Random Pro-
cesses: Stochastic Models with Infinite Variance.New York/London:
Chapman & Hall, 1994.

[11] W. H. DuMouchel, “Stable distributions in statistical inference,” Ph.D.
dissertation, Dept. of Statistics, Yale University, New Haven, CT, 1971.

[12] B. W. Brorsen and S. R. Yang, “Maximum likelihood estimates of
symmetric stable distribution parameters,”Commun. Statist.-Simul.,vol.
19, pp. 1459–1464, 1990.

[13] A. S. Paulson, E. W. Holcomb, and R. A. Leitch, “The estimation of the
parameters of the stable laws,”Biometrika,vol. 62, pp. 163–170, 1975.

[14] V. M. Zolotarev, “Statistical estimates of the parameters of stable laws,”
Math. Stat.: Banach Center Pub.,vol. 6, pp. 359–376, 1980.

[15] J. H. McCulloch, “Simple consistent estimators of stable distribution
parameters,”Commun. Statist.-Simul.,vol. 15, pp. 1109–1136, 1986.

[16] E. F. Fama and R. Roll, “Some properties of symmetric stable distribu-
tions,” J. Amer. Statist. Assoc.,vol. 63, pp. 817–836, 1968.

[17] Y. Mahieux, G. Le Tourneur, and A. Saliou, “A microphone array
for multimedia workstations,”J. Audio Eng. Soc.,vol. 44, no. 5, pp.
365–372, May 1996.

[18] X. Ma and C. L. Nikias, “Joint estimation of time delay and frequency
delay in impulsive noise,”IEEE Trans. Signal Processing,vol. 44, pp.
2669–2687, Nov. 1996.

[19] P. Tsakalides and C. L. Nikias, “Maximum likelihood localization of
sources in noise modeled as a stable process,”IEEE Trans. Signal
Processing,vol. 43, pp. 2700–2713, Nov. 1995.

Panayiotis G. Georgiou (S’98) received the B.A. and M.Eng. degrees in
electrical and information sciences from Cambridge University, Cambridge,
U.K., in 1996. He completed the M.S. degree at the University of Southern
California, Los Angeles, and is working toward the Ph.D. degree.

His research interests include time delay estimation techniques, broadband
array signal processing, lower order statistics, and spatial sound rendering.

Panagiotis Tsakalides(S’93–M’95) received the Ph.D. degree in electrical
engineering in 1995 from the University of Southern California (USC), Los
Angeles.

He was a Research Assistant Professor at USC from 1996 to 1998. He is
currently with the Department of Electrical Engineering at the University
of Patras, Patras, Greece. His research interests include statistical signal
processing with emphasis on space-time adaptive processing for wireless
communications, sonar, and radar applications.

Chris Kyriakakis (M’96) received the Ph.D. degree in electrical engineering
from the University of Southern California (USC), Los Angeles, in 1993.

He is an Assistant Professor of electrical engineering as well as an inves-
tigator in the Integrated Media Systems Center (IMSC), an NSF Engineering
Research Center at USC. His research is in the areas of immersive audio
signal processing, adaptive beamforming, and immersive telepresence.

Authorized licensed use limited to: University of Southern California. Downloaded on May 7, 2009 at 17:07 from IEEE Xplore.  Restrictions apply.


