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ABSTRA CT

In this paper we investigatean alternativ e to the Gaussiandensity for modeling signalsencountered in audio
environments. The observation that sound signalsare impulsive in nature, combined with the reverberation
e®ectscommonly encountered in audio, motivates the useof the Sub-Gaussiandensity.
The new Sub-Gaussianstatistical model and the separablesolution of its Maximum Likelihood estimator
are derived. These are used in an array scenario to demonstrate with both simulations and two di®erent
microphone arrays the achievable performancegains.
The simulations exhibit the robustnessof the sub-Gaussianbasedmethod while the real world experiments
reveal a signi¯cant performancegain, supporting the claim that the sub-Gaussianmodel is better suited for
sound signals.
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1 INTR ODUCTION

In this paper we present an alternativ e model for signals
encountered in audio environments. Motiv ated by the
observation that noise in a room environment is mostly
due to reverberation rather than independent sources,
we derive a model of dependent source and noise. In
addition, based on the demonstration of the impulsiv e-
ness of sound in previous work from these and other
authors[11, 18], we decide to use the ®-stable class of
distributions, and more speci¯cally their sub-Gaussian
subset for our model.

We ¯rst derive the probabilit y density function of a sub-
Gaussian processwith impulsiv enessequal to that of a
Cauchy distribution. Sub-Gaussian distributions are a
special caseof ®-stable random processes[25], and they
are variance mixtures of Gaussian random processes[7].
As such, irrespective of the correlation structure of the
underlying Gaussian, the sub-Gaussianelements cannot
be independent. The fact that reverberation in acoustic
environments is not actually white uncorrelated noise,
but rather highly dependent on the source signal, mo-
tiv ated our investigation of the sub-Gaussian model for
audio signals.

Secondly, in order to test the validit y of our model we
express the issue of localization of multiple sources as
a parameter estimation problem and we formulate the
Maxim um Lik elihood (ML) estimator based on the de-
riv ed density. The noise and signals are modeled as
jointly sub-Gaussian (i.e., they are being produced by
the same L¶evy sequence). We assumea scenario under
which there are multiple sourcesreceived by an array of
a greater or equal number of sensors.The transfer func-
tion each signal undergoes while traveling to the array
can be modeled as an attenuation and a delay basedon
the far-¯eld assumption.

We proceed to derive a separable solution for this es-
timator both for the statistics of the signals and the
Directions-of-Arriv al (DOA's). The separable solution
assumesknown statistics in order to recover the DOA's,
and known DOA's in order to recover the statistics.

We then test, initially on simulated data, the perfor-
mance of the sub-Gaussian based and Gaussian based
ML estimators, and show the improved performance of
the estimator based on the new model in comparison
to the one based on the Gaussian. The algorithms are
evaluated under a variety of signal conditions, and we
demonstrate the robustness of the sub-Gaussian based
ML, which performs well even under these other condi-
tions, while the Gaussian based ML degradesin perfor-
mance signi¯can tly when subjected to non-ideal condi-
tions.

Finally , in order to test the localization algorithm with
some real data, we constructed synthetic 20- and 41-
microphone arrays in our Audio Lab (a room with
acoustical characteristics resembling an average living
room). The audio channelswereplayed together through
our 10.2 channel system at 48kHz and 2 microphones
were shifted to form a linear array. The synchronized
playback{recording feature of ProTools, con¯rmed by
the addition of chirp synchronization signals at the start
of the recording, ensured that the arrays were correctly
created.

Results of localization demonstrate that the sub-Gaus-
sian based ML method has a much better localization
performance than its Gaussian counterpart. The sub-
Gaussian ML is localizing correctly the sound sources
in almost every case,while the Gaussian based ML has
a very low probabilit y of localization and a high mean
square error. We additionally demonstrate the abilit y
of the sub-Gaussianbasedmethod to accurately localize
strong echos.

The development of the aforementioned work will follow
an intro duction of ®-stable theory in Section 2 for the
mathematically inclined reader. In Section 3, we will in-
tro duce the new model, derive its density, ML estimator
and separable solution. The performance of the ML es-
timator based on the new sub-Gaussian model will be
assessedvia simulations in Section 4, and on the real
data in Section 5. Finally , Section 6 will give one simple
application of direction ¯nding using in ML in audio.

2 BACKGROUND: ALPHA-ST ABLE DISTRIBU-
TIONS

The Gaussian distribution has traditionally been the
most widely accepted distribution and used, as a rule,
as a realistic model for various kinds of noise. In recent
years however, there has been a tremendous interest in
the class of ®-stable distributions, which are a gener-
alization of the Gaussian distribution, but are able to
model a wider range of phenomenaand can be of a more
impulsiv e nature. In fact, the Gaussian is the least im-
pulsive ®-stable distribution, while other widely known
distributions of the ®-stable class are the Cauchy and
the L¶evy.

In 1991, Cambanis, Samorodnitsky and Taqqu [8] gave
a review of ®-stable processesfrom a statistical point of
view. Several other statisticians have provided valuable
work in the theory of ®-stable distributions. Camba-
nis, Weron, Zolotarev, Miller et al. have done extensive
work on the properties of the ®-stable distributions, in
the ¯eld of linear ¯ltering problems, and in the domain
of spectral representation. A textb ook of comprehensive
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coverageof the ®-stable theory was written by Samorod-
nitsky and Taqqu in 1994 [25].

In 1993, Nikias and Shao [27] gave an intro ductory re-
view of ®-stable distributions from a statistical signal
processingviewpoint that was followed by a book from
the sameauthors in 1995 [21].

Alpha-stable distributions have been used to model di-
versephenomenasuch as radar clutter [31], random °uc-
tuations of gravitational ¯elds, economicmarket indices,
, data ¯le sizeson the Web, and network tra±c [1].

2.1 Theory

The ®-stable distribution, which can model phenomena
of an impulsiv e nature, is a generalization of the Gaus-
sian distribution and is appealing becauseof two main
reasons.

² First, it satis¯es the stabilit y property, which
states that if X ; X 1 , and X 2 are ®-stable inde-
pendent random variables of the samedistribution,
then there exist ¹ 1 and ¹ 2 satisfying:

º 1X 1 + º 2X 2
d= ¹ 1X + ¹ 2 (1)

where º 1 ; º 2 ; ¹ 1 and ¹ 2 are constants and d= de-
notes equality in distribution.

² Second, it satis¯es the Generalized Central
Limit Theorem [21, 25, 29] stating: X is ®-stable,
if and only if X is the limit in distribution of the
sum:

Sn =
X 1 + X 2 + : : : X n

an
¡ bn (2)

where X 1 ; X 2 : : :, are i.i.d. r.v.'s and n ! 1 . Pa-
rameter bn is real and an is real and positive.

There is no closed form expression for the probabilit y
density function of ®-stable distributions, but the char-
acteristic function, ' (t), is given by:

' (t) = exp (i ¸t ¡ ° jt j® [1 + i¯ sign(t)! (t; ®)]) (3)

where:

! (t; ®) =
½

tan ®¼
2 ; if ® 6= 1

2
¼ log jt j; if ® = 1

(4)

sign(t) =

8
<

:

1; if t > 0
0; if t = 0

¡ 1; if t < 0
(5)

and:

² ® is the characteristic exponent satisfying
0 < ® · 2. The characteristic exponent controls the
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Fig. 1: The tails of the probabilit y density function of a sym-
metric ®-stable distribution for di®erent values of ®. The case
of ® = 2 being the less impulsiv e case of Gaussian noise and
® = 1 the more impulsiv e Cauchy case. In each of the above
casesthe dispersion was kept constant at ° = 1.

thickness(also referred to as heaviness) of the tails
of the density function. The tails are heavier, and
thus the noise more impulsiv e for low values of ®
while for a larger ® the distribution has a less im-
pulsive behavior (Figs. 1 and 2).

² ¸ is the location parameter (¡1 < ¸ < 1 ). It
corresponds to the mean for 1 < ® · 2 and the me-
dian for 0 < ® · 1.

² ° is the dispersion parameter (° > 0), which de-
termines the spread of the density around its loca-
tion parameter. The dispersion behavesin a similar
way to the variance of the Gaussian density, and it
is in fact equal to half the variance when ® = 2, the
Gaussian case.

² ¯ is the index of symmetry (¡ 1 · ¯ · 1). When
¯ = 0, the distribution is symmetric around the
location parameter.

The caseof ® = 2; ¯ = 0 corresponds to the Gaussian
distribution, while ® = 1; ¯ = 0 corresponds to the
Cauchy distribution. The density functions in these two
casesare given by:

f ®=2 (° ; ¸ ; x) =
1

p
4¼°

exp
½

¡
(x ¡ ¸ )2

4°

¾
(6)

f ®=1 (° ; ¸ ; x) =
°

¼[° 2 + (x ¡ ¸ )2 ]
(7)

A closed form expression also exists for the caseof the
L¶evy distribution, which has parameters ¯ = 1 and ® =
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Fig. 2: Sample time series of S®S random variables. The
characteristic exponents are ® = 1:2, ® = 1:5, and ® = 2:0
(Gaussian). The second row of ¯gures shows an enlargement
of parts of the above row, and demonstrates the similarities
between the distributions.

0:5, and therefore is completely skewed to the positive
axis.

f (x) =

(
x ¡ 3

2 e¡ 1
4x

2
p

¼ if x > 0
0 if x < 0

(8)

The only other closed form expression for a stable dis-
tribution is the caseobtained by symmetric re°ection of
the L¶evy, i.e., with ® = 0:5 and ¯ = ¡ 1, the density is
given by f ®=0 :5;¯ = ¡ 1(x) = f L ¶evy (¡ x).

The impulsiv enessof the ®-stable distribution can clearly
be seenin Fig. 2(a), (b), and (c). However, when we take
a closer look at Fig. 2(d), (e), and (f ), the time seriesre-
sulting from the three di®erent distributions do not ap-
pear to be very di®erent. 1 This encouragesthe use of
®-stable distributions in situations where the noise has
been traditionally modeled as Gaussian, but where sud-
den \spik es" might occur. For example, in an enclosed
room sounds produced by pages turning, pens clicking,
or objects falling can give rise to the impulsiv enessin the
noise.

The classof ®-stable distributions doesnot possess̄nite
second (or higher) moments. In fact, ®-stable distribu-
tions with ® 6= 2 have ¯nite moments only for order p

1 It is clear that if the signals were not sampled, self sim-
ilarit y would hold and the similarit y between the signals of
Fig. 2(d), (e) and (f ) would not be apparent.

lower than ®:

® < 2; EjX ® jp Not De¯ned 8 p ¸ ®

® < 2; EjX ® jp < 1 8 0 · p < ®

Gaussian: ® = 2; EjX ® jp < 1 8 p ¸ 0

References[1, 21, 27] and [25] treat the ®-stable theory
further.

2.2 Properties of ®-stable signals

The covariation of two signals x and y is de¯ned as:

[X ; Y ]® ,
Z

S
xy ®¡ 1¹ (ds) =

E(X Y <p ¡ 1> )
E( jY jp )

° y (9)

where S is the unit circle, ¹ (:) is the spectral mea-
sure of the S®S random vector (X,Y), ° y is the dis-
persion parameter of signal Y , p satis¯es 1 · p < ®, and
y<k > = jyjk ¡ 1 y¤ is the signed-power non-linearit y.

The covariation of complex jointly S®S random vari-
ables is not generally symmetric and has the following
properties:

P1 If X 1 ; X 2 ; and Y are jointly S®S, then

[aX 1 + bX2 ; Y ]® = a[X 1 ; Y ]® + b[X 2 ; Y ]® (10a)

for any complex constants a and b.

P2 If Y1 and Y2 are independent and Y1 ; Y2 and
X are jointly S®S, then

[aX ; bY1+ cY2 ]® = ab<® ¡ 1> [X ; Y1 ]®+ ac<® ¡ 1> [X ; Y2 ]®
(10b)

for any complex constants a; b and c.

P3 If X and Y are independent S®S, then

[X ; Y ]® = 0 (10c)

An alternativ e to the covariation measure is the Frac-
tional Lower Order Correlation Function de¯ned as:

AX Y = E
©

X <p> Y ¤<q > ª
(11)

2.3 Sub-GaussianRandom Variables

A Sub-Gaussian random vector X can be de¯ned as a
random vector with characteristic function of the form

' (u ) = exp
µ

¡
1
2

h
u T R u

i ®=2
¶

(12)

where R is a positive-de¯nite matrix.

Sub-Gaussian processesare variance mixtures of Gaus-
sian processes[7]. If X (t) is sub-Gaussianwith parame-
ter ® (will be denoted by ®-SG(R ) ) and S is a positive
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Fig. 3: Multiv ariate Gaussian random vector of size 4 along
time with § = [1 0:9 ; 0:1 0].

stable processwith characteristic exponent ®=2 (i.e., S
is ®

2 -stable random variable completely skewed to the
right) and Y (t) is a multiv ariate Gaussian processinde-
pendent of S, then:

X (t) = S1=2Y (t) (13)

Clearly from the above, irrespective of the correlation
structure of Y (t), the components of X (t) can not be
independent.

A multiv ariate Gaussianrandom vector of size4 is shown
in Fig. 3, while a sub-Gaussianrandom vector of impul-
siveness® = 1 is shown in Fig. 4. The sub-Gaussian
random vector is obtained by eq. (13) using a L¶evy ran-
dom variable (8) for S and the multiv ariate Gaussian
random of Fig. 3

3 THE NEW MODEL

We considered in previous work [11] a sound source lo-
calization method using an array of microphones based
on the computationally simple Time Delay Estimation
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Fig. 4: Multiv ariate sub-Gaussian random vector of size 4
along time with ® = 1 and generated with the Gaussian
signal of Fig. 3. The signals are very impulsiv e and hence
sign(x) loge(jx j) is shown on the graphs.

(TDE) Phase Transform Method (PHA T). We demon-
strated the impulsiv e nature of sound signals and pro-
vided a modi¯ed version of the common PHAT method
that takes this nature into consideration. The result-
ing localization algorithm { the Fractional Lower-Order
Statistics (FLOS) PHAT method { performed signi¯-
cantly better (up to a factor of 4) than the existing
PHAT method. The development in [11] focused on a
single source, two-sensorscenario.

We contin ue in this chapter our work on localization by
focusing on the development of methods relating to the
estimation of the parameters of a system { such as the
one shown in Fig. 5 { where we assumemultiple sources
received by an arbitrary number of sensors(greater than
the number of sources). Additionally , we are aiming to
provide a more accurate statistical description of the sig-
nals encountered in acoustical environments.

This problem, which we initially visit from a completely
theoretical perspective and later in the microphone array
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Fig. 5: We assume · source signals being received by ½¸ · sensors. Sources are assumed to be in the far-¯eld, and th us there
is a single incidence angle for each source on all sensors.

signal processingframework, can have signi¯can t appli-
cations in a variety of ¯elds. The scenario of impulsiv e
and multiplicativ e noise is encountered for instance in
communications, owing to the presenceof local scatter-
ers in the vicinit y of the mobile or due to wavefronts that
propagate through random inhomogeneousmedia. Ger-
shman et al [12] have, for example, presented a method
that assumes a random phase perturbation along all
source-sensorpaths. Their method has led to a non-
Gaussian model, and did not result in a ML estimator.
Bessonet al [3] suggesteda similar localization algorithm
for a source,which appears as a scatter of sources. Sim-
ilarly Stoica et al [30] have presented a Gaussian based
ML method in the presenceof multiplicativ e noise, but
constraining the amplitude of the noise to be 1. The
model we propose in this chapter is well suited for such
cases, even though experiments will be performed for
audio signals only.

The transmitted signals for the development of the lo-
calization algorithm are assumed to be stochastic, and

as such, the parameters of interest will be their statis-
tics and Directions-of-Arriv al (DOA's). The estimation
processcombines the measurements to obtain a vector
x (t), which best describes the observed data. The esti-
mation processis in essencea mathematical algorithm
that maximizes a certain cost function with respect to
the observation vector x (t), and the cost function is ob-
tained by assuming a certain statistical model for the
signal and a certain optimization criterion. Common op-
timization criteria are the Least-Squares(LS), Weighted
LS, Maxim um Lik elihood (ML), as well as constrained
optimization criteria. Despite the wide variety of opti-
mization criteria, the optimal detector is characterized
by a single result: the Maxim um Lik elihood ratio test,
which was also one of the ¯rst methods to be applied
in the area of array signal processing[17], and which we
will be using in this work.

The Maxim um Lik elihood technique applied to the
source localization problem usually makes two di®erent
assumptions for the signal waveforms, resulting in two
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Fig. 6: A multiv ariate Gaussian signal corrupted by multi-
plicativ e L¶evy noise is transformed through a set of delays to
the receiving end of the array. Similarly , the additiv e noise is
generated by the same L¶evy sequence. This may be a good
model for a reverberation noise, which is highly dependent on
the signal of interest.

di®erent ML methods. According to the Stochastic ML
(SML), the signals are usually modeled as Gaussian ran-
dom processesmotiv ated by the Central Limit Theorem,
and result in closed form mathematical expressions. On
the other hand, in the Deterministic ML (DML) the sig-
nals are consideredto be unknown but deterministic. In
this case,estimates of the signals as well as the DOA's
are desired, while in the former case,the only parameters
to be estimated are the statistics and DOA's. In this pa-
per we deal exclusively with Stochastic ML estimation,
and we will deviate from the usual Gaussian assumption
to work with the alternativ e impulsiv e model.

3.1 Motiv ation for a sub-Gaussianmodel

The demonstration of the impulsiv enessof sound sig-
nals motiv ates our work in improving the signal model.
Additionally , one of the most important sourcesof noise
in any acoustical environment is the reverberation (while
similar e®ectssuch asmultipath can be observed in other
environments). As we are interested in a more accurate
model for acoustical signals, we attempt to model both
these e®ects.

The sub-Gaussianprocessesare attractiv e in this respect
for two main reasons. First, sub-Gaussian processesare
impulsiv e, and hence are able to account for the impul-
sivenessof the signals. Secondly, the components of a
multiv ariate sub-Gaussian processcan not be indepen-
dent. We suspect this processto be a good model for
reverberant noise, which is highly related to the signal
itself. As Fig. 6 shows, the noise, which mostly consists
of unwanted reverberant signals, can be considered as

jointly sub-Gaussian with the signal, as would be the
signals produced from the sameL¶evy process.

We begin with a theoretical analysis for the SML esti-
mator of a Gaussian signal in the presenceof Gaussian
noise. This analysis is given as a precursor to the deriva-
tion of the sub-Gaussiandensity and the SML estimation
of a signal modeled as a sub-Gaussian random process.

3.2 Framework

Weassumea scenarioasdescribed on Fig. 5, under which
there are · sourcesreceived by an array of ½sensors.The
transfer function each signal undergoes while traveling
to the array can be modeled as an attenuation and a
delay. The attenuation will be considered the same at
all sensorsunder the assumption that the sourcesare in
the far-¯eld of the array. These transfer functions are

ar ;k = e¡ i ! ¿r ;k ; r = 1 : : : ½ and k = 1 : : : · (14)

where ¿r ;k is the delay of the signal (of sourcek) received
at sensorr relativ e to the ¯rst sensor.

We assumethe sourcesto be in the far-¯eld and hence,
¿r ;k = ¿r (µk ), and it is also clear that assuming a linear
array

¿r ;k = (r ¡ 1) ¢¿1(µk ) (15)

We denote the vector of the medium transformations for
source k by

a k = [a1;k a2;k : : : a½;k ]T

= [1 e¡ i ! ¿1;k e¡ i ! ¿2;k : : : e¡ i ! ¿½;k ]T (16)

The array's input at a single sensorr is

x r (f ) =
·X

k =1

a r ;k ¢sk (f ) + n r (f ) (17)

and therefore the array's input vector is

x (f ) = A ¢s(f ) + n (f ) (18)

where

A =

2

6
6
6
4

a1;1 a1;2 ¢¢¢ a1;·

a2;1 a2;2 ¢¢¢ a2;·

...
...

. . .
a½;1 a½;2 a½;·

3

7
7
7
5

and s(f ) =

2

6
6
6
4

s1(f )
s2(f )

...
s· (f )

3

7
7
7
5

3.3 Gaussian Signals

The most commonly used Maxim um Lik elihood DOA
estimator is the Gaussian ML derived either under the
assumptions of a deterministic or a stochastic signal. We
present in this section the Stochastic ML (SML) DOA
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estimator for a Gaussian signal in additiv e white Gaus-
sian noise as background material for the SML DOA es-
timator to be presented in section 3.4, which is basedon
sub-Gaussiansignals.

Assuming the signals to be jointly stationary Gaus-
sian stochastic processeswith covariance matrix § =
E

£
s(t) sy (t)

¤
= E

£
s(f ) sy (f )

¤
, and the noise to be un-

correlated white noiseof variance ¾2 , we can expressthe
covariance matrix of the received signal as

R = E
h
x (f ) x y (f )

i

= E
· h

A s(f ) + n (f )
i h

A s(f ) + n (f )
i y

¸

= A § A y + ¾2 I (19)

From the assumption that the snapshotsare independent
and identically distributed, the density function of the
complete data set of size M is

f (X ) =
f MY

f = f 1

1

¼½
¯
¯
¯R

¯
¯
¯

exp
³

¡ x y (f )R ¡ 1x (f )
´

(20)

where
X = x (f 1); x (f 2); : : : ; x (f M ) (21)

In order to solve the SML problem, we need to estimate
¾̂2 , §̂ , and µ̂ by maximizing eq. (20) with respect to
these parameters

h
¾̂2 ; §̂ ; µ̂

i
= arg max

¾̂2 ; §̂ ; µ̂

f MX

f = f 1

n
¡ ½loge(¼) ¡ loge jRj

¡ x y (f )R ¡ 1x (f )
o

(22)

Removing constant terms and terms independent of the
parameters ¾̂2 , §̂ and µ̂ , we reach:

h
¾̂2 ; §̂ ; µ̂

i
= arg min

¾̂2 ; §̂ ; µ̂

f MX

f = f 1

n
loge jRj + x y (f )R ¡ 1x (f )

o

(23)
or

h
¾̂2 ; §̂ ; µ̂

i
= arg min

¾̂2 ; §̂ ; µ̂

n
loge jRj + Tr

h
R¡ 1R̂

i o
(24)

where

R̂ =
1

M

f MX

f = f 1

h
x (f )x y (f )

i
(25)

The problem is further investigated in [4] and [16], and
numerical methods are developed for the minimization

of the ML function, an intro duction of which is given
here for completeness.

From eq. (19) we can deduce that:

§̂ (µ) = A ¡
h
R̂ ¡ ¾̂2(µ)I

i
A ¡y (26)

and [4, 16]

¾̂2 =
1

½¡ ·
Tr

·
P?

A
R

¸
(27)

where in the above

A ¡ =
³

A yA
´ ¡ 1

A y (28)

is the pseudo-inverseof A and P?
A

projects into the null

spaceof this pseudo-inverse, i.e.,

P?
A

= I ¡ AA ¡ (29)

From eqs. (24), (26), and (27), we can deduce that:

µ̂ML = arg min
µ

loge

¯
¯
¯A §̂ A y + ¾̂2 I

¯
¯
¯ (30)

We should reiterate here that A above is a function of
µ, although the dependencehas been dropped for nota-
tional convenience.

Numerical methods have to be employed to solve this
optimization problem[28].

3.4 Sub-GaussianSignals

An alternativ e to modeling the signal as Gaussian dis-
tributed described in the previous section is by employ-
ing a Sub-Gaussian random process. This model allows
both for the impulsiv enessand dependenceappearing in
audio signals. For this purp ose,we can usea distribution
of impulsiv eness® = 0:5, which is completely skewed to
the positive axis together with a multiv ariate Gaussian
density. The L¶evy (Fig. 8) distribution satis¯es exactly
these properties (also referred to as a Paretto type 5
distribution with an index of symmetry ¯ = 1 and char-
acteristic exponent ® = 0:5). Fig. 7 gives a top level
description of the problem and signals:

² A multiv ariate Gaussiansignal is corrupted by mul-
tiplicativ e L¶evy noiseto the half power, i.e., sk (f ) =
uk (f )

1
2 ¢v k (f ) = wk (f ) ¢v k (f )

² The resulting signal sk (f ) is transformed through a
set of delays x (f ) = A ¢s(f ) to the receiving end of
the array

² Any added noise can be modeled as jointly sub-
Gaussian

AES 113TH CONVENTION, LOS ANGELES, CA, USA, 2002OCTOBER 5{8 8



GEORGIOU AND KYRIAKAKIS AN ALTERNA TIVE MODEL FOR SOUND SIGNALS

Multiv ariate
GaussianSignal

E f vm(t)vn(t)g = ¾2
m;n

E f vm(t)vm(t + ¿)g= 0 8 ¿ 6= 0

£
Medium

Transformation
A(µ) s(t)

+

A

R

R

A

Y

L¶evy Noise
(after squareroot)

f (w) =

(
1p
¼w¡ 2 exp

©
¡ 1

4w2

ª
if w > 0

0 if w · 0

£
Gaussian
Noise
n(t)

SG Signal

SG Noise

Fig. 7: A multiv ariate Gaussian signal, corrupted by multiplicativ e L¶evy noise, is then transformed through a set of delays to
the receiving end of the array. The addition of white Gaussian noise is also desirable. The noise can be generated from the
same L¶evy processin order to be join tly sub-Gaussian with the signal.

PSfrag replacements

17.6%of the signal is of
amplitude higher than 10

° = 1

u

f
(u

)

0 1 2 3 4 5 6 7 8 9 10
0

0:5

1

1:5

2

Fig. 8: L¶evy distribution along with the histogram of the data
generator.

3.5 The Sub-GaussianDensity Function

The Gaussian density is similar in form to the one of
eq. (20), and the L¶evy distribution [32] is given by:

f (u) =

(
u ¡ 3

2 e¡ 1
4u

2
p

¼ if u > 0
0 if u < 0

(31)

So from eq. (13), the signal s = [s1 : : : s· ]T is of the form

sk (t) = uk (t)
1
2 ¢v k (t) = wk (t) ¢v k (t) (32)

In order to ¯nd the distribution of sk (t), we ¯rst need
the distribution of wk (t).
From [23]

w = g(u) =
p

u (33)

where the dependencehasbeendropped for convenience.
Using the root of this equation, u1 = w2

g0(u1) =
u

¡ 1
2

1

2
=

w¡ 1

2
(34)

and therefore

f w (w) =
f u (w2)
j 1

2 w¡ 1 j
= 2jwjf u (w2)

= jwj
w¡ 3e¡ 1

4w 2

p
¼

(35)

From eq. (31):

f (w) =

(
w ¡ 2 e

¡ 1
4w 2

p
¼ if w > 0

0 if w < 0
(36)

The distribution of the transmitted signal can now be
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given by the multiv ariate distribution function:

F (S) =

+ 1Z

w = ¡1

s =wZ

v = ¡1

f (w) f (v ) dv dw

=

+ 1Z

w =0

s =wZ

v = ¡1

w¡ 2e¡ 1
4w 2

p
¼

1

¼·
¯
¯
¯§

¯
¯
¯

¢exp
³

¡ v y (t)§ ¡ 1v (t)
´

dv dw

=

+ 1Z

w =0

w¡ 2e¡ 1
4w 2

p
¼

erf
h s

w

i
dw (37)

Di®erentiating with respect to s, and then integrating
with respect to w

f (s) =
d
ds

+ 1Z

w =0

s =wZ

v = ¡1

w¡ 2e¡ 1
4w 2

p
¼

1

¼·
¯
¯
¯§

¯
¯
¯

¢exp
³

¡ v y (t)§ ¡ 1v (t)
´

dv dw

=

+ 1Z

w =0

d
dv

s =wZ

v = ¡1

w¡ 2e¡ 1
4w 2

p
¼

1

¼·
¯
¯
¯§

¯
¯
¯

¢exp
³

¡ v y (t)§ ¡ 1v (t)
´

dv

Ã
1
ds
dv

!

dw

=

+ 1Z

w =0

w¡ 2e¡ 1
4w 2

p
¼

1

¼·
¯
¯
¯§

¯
¯
¯

¢exp
³

¡ sy (t)§ ¡ 1s(t)=w2
´

¢w¡ 1 dw

=

+ 1Z

w =0

C ¢w¡ 3 ¢exp
½

¡
1

w2
G

¾
dw

=
C
2G

(38)

where

C =
1

p
¼¼·

¯
¯
¯§

¯
¯
¯

and G =
h

1=4 + sy (t)§ ¡ 1s(t)
i

(39)

Therefore

f (s) =
1

2
p

¼¼·
¯
¯
¯§

¯
¯
¯

¢
h

1=4 + sy (t)§ ¡ 1s(t)
i ¡ 1

(40)

Note that if the Gaussian random variable was one di-

L¶evy f (u) =

8
><

>:

u¡ 3
2 e¡ 1

4u

2
p

¼
if u > 0

0 if u < 0

Gaussian f (x) =
1

p
2¼¾

e
¡ x 2

2¾2

1-D Sub-Gaussian f (x) =
1

2
p

2¼¾
¢

1
x 2

2¾2 + 1
4

½-D Gaussian f (X ) =
1

¼½
¯
¯§

¯
¯ exp

¡
¡ x y§ ¡ 1x

¢

½-D Sub-Gaussian f (X ) =

£
x y§ ¡ 1x + 1

4

¤¡ 1

2
p

¼¼½
¯
¯§

¯
¯

Table 1: Distributions of interest

mensional and real, then

f (s) =
1

2
p

¼
p

2¼¾
¢
·

1=4 +
s2

2¾2

¸ ¡ 1

=
1

2
p

2¼¾
¢
·

1=4 +
s2

2¾2

¸ ¡ 1

(41)

Plots are shown on Fig. 9 for the one dimensional case.

3.6 Sub-GaussianbasedML

Using the derived density function of the previous sec-
tion, we can now proceed to derive the ML solution of
the array problem as described in Fig. 7.

The received signal x = [x1 : : : x½]T is now of the form:

x r (t) = y(t)
1=2 ¢z r (t) (42)

where again, as the transmitted signal, the received sig-
nal is sub-Gaussian.

x r (f ) = y(f )
1=2 z r (f )

= A1 v(f )
1=2 A

2
u k (f )

= v(f )
1=2 A u k (f ) (43)
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PSfrag replacements

¾SG = 2

¾SG =
p

2

¾SG = 1

¡ 5 0 5

¡ 5 0 5

¡ 5 0 5

0:1

0:2

0:3

0:4

0:05

0:1

0:15

0:2

0:25

0:3

0:35
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Gaussian: Solid line Sub-Gaussian:Dash-Dot Cauchy: Dashed

Fig. 9: Sub-Gaussian versus Cauchy and Gaussian distribu-
tions. When the dispersion of the underlying Gaussian of the
sub-Gaussian process is equal to 1 (i.e., ° S G = 1 ) ¾S G =p

2), the sub-Gaussian is equal in distribution to the normal-
ized Cauchy.

Clearly, there exists a scalar A 1 such that y = v.

Without any loss of generality, we can now assumethat
the linear transformation A 1 on the one-dimensional
L¶evy distribution can be incorporated in the matrix
transformation A = A 1A

2
. It is therefore straightfor-

ward to show that the received signal's correlation ma-
trix will follow eq. (19), but in this case, the charac-
teristics of z will be relating to those of v (assuming a
noise-freescenario):

R = E
h
z (f )z y (f )

i

= E
· h

A v (f )
i h

A v (f )
i y

¸

= A §
v

A y (44)

or in a noisy environment:

R = A §
v

A y + ¾2
n I

½
(45)

Therefore, the maximum lik elihood estimator is

[§̂ ; µ̂ ] = arg max
§̂ ; µ̂

f MY

f = f 1

2
p

¼¼½
¯
¯
¯R

¯
¯
¯
¢
h
x y (f )R ¡ 1x (f ) + 1=4

i ¡ 1

(46)

To simplify , take the loge

[§̂ ; µ̂ ] = arg min
§̂ ; µ̂

f MX

f = f 1

n
loge

¯
¯
¯R

¯
¯
¯

+ loge

h
x y (f )R ¡ 1x (f ) + 1=4

i o
(47)

Intro ducing the original signal statistics:

[§̂ ; µ̂ ] = arg min
§̂ ; µ̂

f MX

f = f 1

(

loge

¯
¯
¯A §

v
A y + ¾2

n I
½

¯
¯
¯

+ loge

·
x y (f )

n
A §

v
A y + ¾2

n I
½

o ¡ 1
x (f ) + 1=4

¸ )

(48)

3.7 SeparableSolution

We proceed to reach an alternativ e minimization func-
tion to reduce the search space. To do so we follow the
derivations of [16] in which the ML function is ¯rst mini-
mized w.r.t. the signal statistics, assumingknown DOA:

Summation is omitted for the derivations, and thus we
de¯ne the function to be minimized as:

L =

(

loge

¯
¯
¯A §

v
A y + ¾2

n I
½

¯
¯
¯

+ loge

·
x y (f )

n
A §

v
A y + ¾n I

½

o ¡ 1
x (f ) + 1=4

¸ )

= loge

¯
¯
¯R

¯
¯
¯

| {z }
L 1

+ loge

h
x y (f )R ¡ 1x (f ) + 1=4

i

| {z }
L 2

(49)

Di®erentiating:

@L
@¾ij

=
@

@¾ij

(

loge

¯
¯
¯R

¯
¯
¯ + loge

h
x y (f )R ¡ 1x (f ) + 1=4

i
)

=
@loge

¯
¯
¯R

¯
¯
¯

@¾ij
+

@loge

h
x y (f )R ¡ 1x (f ) + 1=4

i

@¾ij

(50)
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Working separately on the two terms:

@L 1

@¾ij
=

@loge

¯
¯
¯R

¯
¯
¯

@¾ij

= Tr

2

6
4

8
<

:

@loge

¯
¯
¯R

¯
¯
¯

@R

9
=

;

T

@R

@¾ij

3

7
5

but

@loge

¯
¯
¯R

¯
¯
¯

@R
= [R¡ 1 ]T

@R

@¾ij
= a i a

y
j (51)

Hence

@L 1

@¾ij
=

@loge

¯
¯
¯R

¯
¯
¯

@¾ij
= Tr

h
R¡ 1a i a

y
j

i
= a y

j R¡ 1a i (52)

Similarly , for the secondterm:

@L 2

@¾ij
=

@loge

h
x y (f )R ¡ 1x (f ) + 1=4

i

@¾ij

=
@loge

h
Tr

h
R¡ 1C

i
+ 1=4

i

@¾ij

=
1

Tr
h
R¡ 1C

i
+ 1=4

¢
@

@¾ij

n
Tr

h
R¡ 1C

i
+ 1=4

o

= ¡
1

Tr
h
R¡ 1C

i
+ 1=4

¢Tr
h
R¡ 1 C R¡ 1 a i a y

j

i

= ¡
1

Tr
h
R¡ 1C

i
+ 1=4

¢a y
j R¡ 1 C R¡ 1 a i (53)

where we de¯ne C = x x y .

Therefore

@L
@¾ij

=
@L 1

@¾ij
+

@L 2

@¾ij

= a y
j R¡ 1a i ¡

a y
j R¡ 1 C R¡ 1 a i

Tr
h
R¡ 1C

i
+ 1=4

= a y
j

2

4R¡ 1 ¡
R¡ 1 C R¡ 1

Tr
h
R¡ 1C

i
+ 1=4

3

5 a i (54)

or in matrix notation, and at the ML value of §

@L
@§

= A y

2

4R¡ 1 ¡
R¡ 1 C R¡ 1

Tr
h
R¡ 1C

i
+ 1=4

3

5 A
i

= A yR¡ 1

2

4R ¡
C

Tr
h
R¡ 1C

i
+ 1=4

3

5 R¡ 1A
i

= 0 (55)

Using Sherman-Morrison-Woodbury identit y:

³
A + U V y

´ ¡ 1
= A ¡ 1¡ A ¡ 1U

³
I + V y A ¡ 1 U

´ ¡ 1
V y A ¡ 1

(56)
with the relation connecting R to the original signal
statistics §

R = A §
v

A y + ¾2
n I (57)

Therefore

R¡ 1 =
1

¾2
n

½
I ¡ A

³
§ A y A + ¾2

n I
´ ¡ 1

§ A y
¾

(58)

and in order to substitute back in eq. (55), we calculate

R¡ 1A =
1

¾2
n

½
I
½

¡ A
³

§ A y A + ¾2
n I

´ ¡ 1
§ A y

¾
A

=
1

¾2
n

½
A ¡ A

³
§ A y A + ¾2

n I
´ ¡ 1

§ A yA
¾

=
1

¾2
n

A
½

I
·

¡
³

§ A y A + ¾2
n I

´ ¡ 1
§ A yA

¾

=
1

¾2
n

A
n

§ A y A + ¾2
n I

o ¡ 1

¢
n

§ A y A + ¾2
n I ¡ § A y A

o

= A
n

§ A y A + ¾2
n I

o ¡ 1
(59)

Substituting back in eq. (55)

@L
@§

=
n

§ A y A + ¾2
n I

o ¡ 1
A y

"

R

¡
C

Tr
h
R¡ 1C

i
+ 1=4

#

A
n

§ A y A + ¾2
n I

o ¡ 1
(60)
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But @L
@§ = 0, therefore

A y

2

4A §
v

A y + ¾2
n I ¡

C

Tr
h
R¡ 1C

i
+ 1=4

3

5 A =

A yA §
v

A yA + A y ¾2
n A ¡

A y C A

Tr
h
R¡ 1C

i
+ 1=4

= 0 (61)

Solving for § , we can ¯nd the §
ML

(over all available
data)

§
ML

=
1

M

t MX

t = t 1

"
³

A yA
´ ¡ 1

A y

Ã
x x y

Tr
h
R¡ 1x x y

i
+ 1=4

¡ ¾2
n

!

A
³

A yA
´ ¡ 1

#

(62)

To solve the above, an initial estimate of R can be found
from the data using a covariation measure, as will be
demonstrated in the next section. However, experience
has shown this step not to be necessary, since the recur-
sion convergesrapidly from an identit y matrix.

The noise variance ¾2
n can also be found from the same

covariation measureassumingthe number of sourcesand
sensorsare known, similarly to eq. (27).

3.8 DOA Estimation

Assuming that eq. (45) holds, i.e., that signal and noise
are jointly sub-Gaussian,we can proceedto estimate the
DOA. Using the pseudo-ML approach, the modi¯ed ML
function can now be expressedas:

µ̂ = arg min
µ̂

f MX

f = f 1

n
loge

¯
¯
¯R

¯
¯
¯ +

+ loge

h
x y (f )R ¡ 1x (f ) + 1=4

i o
(63)

where the inverseof R̂ can be estimated using the Wood-
bury identit y. It is also signi¯can t to note here that the

¯rst term loge

¯
¯
¯R

¯
¯
¯ is not a function of the data, and hence

can be left out of the minimization processin the case
that we are only searching for the angle parameters.

Therefore:

[µ̂ ] = arg min
µ̂

f MX

f = f 1

n
loge

h
x y (f )R ¡ 1x (f ) + 1=4

i o
(64)
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-400

-300

-200

-100
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-200

-100

0

100
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Fig. 10: Sample transmitted (real) signal for a two-source
problem.

4 SIMULA TIONS

A sample realization based on the derivation assump-
tions of eq. (40) for a two source problem is shown on
Fig. 10. By observing the sample signal the reason why
secondorder statistics fail under this conditions becomes
clear. Considering that the dominating data will be the
few realizations of high amplitude, the overall second
order statistics will °uctuate signi¯can tly depending on
the statistics of these spikes. For example, while a data
block between 250 and 350 will give a normalized auto-
correlation of near 1, it will be closer to ¡ 1 between200
and 300.

4.1 Arra y Spacing

Simulations in this section are performed using a nar-
rowband signal, thus we brie°y discuss the intersensor
spacing of the array.

We assumethat d, the intersensor distance, is equal to
»¸=2 , where » · 1. Therefore, from (15)

¡ i! ¿ = ¡ i»¼sin µ

and hence

A =

2

6
6
6
4

1 1 ¢¢¢ 1
e¡ i »¼sin( µ1 ) e¡ i »¼sin( µ2 ) ¢¢¢ e¡ i »¼sin( µ· )

...
...

. . .
e¡ i »¼½sin ( µ1 ) e¡ i »¼½sin( µ2 ) e¡ i »¼½sin( µ· )

3

7
7
7
5

(65)

4.2 DOA Estimation

Several sets of simulations need to be performed to test
the validit y of the algorithm. In each of the following
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Desired
Signal

Reverberant
Signal

(1) w is L¶evy (2) w is Gaussian
(3) w = 1 (4) w is ½+ · -variate L¶evy.

v(t) n (t)

A +

A

R

R

A

Y

Fig. 11: Explanation of the conditions of the four testing
cases.

tests, § = I is assumedto hold, although the test ma-
trix had a random correlation structure, but always with
diagonal elements of dispersion equal to the dispersion
of the L¶evy sequence(° s = ° u = ° v = 1). In all cases
the impulsiv enesswas kept constant (® = 1 for cases1
& 4, and ® = 2 for 2 & 3 as described below). The
Generalized Signal-to-Noise Ratio used below is de¯ned
as:

GSNR = 10log10

µ
° s

° n

¶
= ¡ 10log10 (° n ) (66)

In the following four cases,we had random DOA's for 2
sources, 8 sensors,and blocks of 32 samples. The four
simulation scenariosare described below:

1. Exactly as per the derivation assumptions
(Fig. 12a): received signal is sub-Gaussian,created
from a Multiv ariate Gaussian and a univariate
L¶evy. Received signal impulsiv enessis ® = 1
(impulsiv eness{ dependence)

2. The signal is a Multiv ariate Gaussian (Fig. 12b),
and is created from a Multiv ariate Gaussian (v )
and a univariate Gaussian (w). Received signal im-
pulsivenessis ® = 2
(no impulsiv eness{ dependence)

3. The signal is a Multiv ariate Gaussian(Fig. 12c) and
it undergoes no energy °uctuation (w = 1, v = s).
This conforms to the assumptions of the well known
Gaussian based ML. Clearly, the received signal

impulsiv enessis ® = 2
(no impulsiv eness{ no dependence)

4. Finally , the received signal is sub-Gaus-
sian(Fig. 12d), created from a Multiv ariate
Gaussian (v ) and a Multiv ariate L¶evy (w ). In this
case, the signals can be viewed as simply Cauchy.
Received signal impulsiv enessis ® = 1
(impulsiv eness{ no dependence)

Fig. 12a shows the mean squarederror for the derivation
assumption conditions, where signal and noiseare jointly
sub-Gaussian. The impulsiv enessof the noise variation
degrades signi¯can tly the performance of the Gaussian
basedML, especially at low GSNR's.

We evaluate the performance of the sub-Gaussianbased
ML by testing the robustnesswhen the processceasesto
be impulsiv e. The sub-Gaussianalgorithm performs bet-
ter than the Gaussian ML (Fig. 12b), even under these
conditions.

As expected however, when there is no envelope applied
to the signals, i.e., the signalsare pure Gaussian, the per-
formance of the Gaussian ML method is slightly better
than that of the sub-Gaussian-basedML (Fig. 12c).

The real bene¯t of the proposedML method can be ob-
served when the signals are impulsiv e due to random
multiplicativ e noise, independent from one sourceto the
next (Fig. 12d).

4.3 Estimating Statistics using Covariation

Consider the Gaussian signals v1 and v2 with covariance
¾2

12 , i.e., § = [1 ¾12 ; ¾¤
12 1], and a L¶evy sequenceu used

to create a sub-Gaussian signal. We seek to extract §
from the signal s = u v .

With the hypothesis that secondorder statistics are de-
¯ned for the above signals, then one could proceedin the
usual way of:

E [(u v1)(u v2)¤ ] = E [u v1 u¤ v¤
2 ]

= E [u u¤ ] E [v1 v¤
2 ]

= Const. ¾12

However, asE [u u¤ ] doesnot exist, one is required to use
lower order statistics. We investigate the Fractional Or-
der Correlation Function encountered previously in the
FLOS-PHA T algorithm and de¯ned as:

A xy = E
©

x<p> y¤<q > ª
(67)

Clearly, in this case:

E
£
(u v1)<p> (u v2)¤<p> ¤

=

= E
£
u<p> u¤<p> ¤

E
£
v<p>

1 v¤<p>
2

¤

= Const. E
£
v<p>

1 v¤<p>
2

¤
8 p < 0:5
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Fig. 12: Simulations demonstrate the obtained bene¯t in localization by using the Stochastic ML metho d basedon the L¶evy Sub-
Gaussian processesversus the Gaussian ML metho d for the conditions described in the text. Robustness of the Sub-Gaussian
metho d is apparent especially in case (d).
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Fig. 13: Estimates of the fractional correlation measure can
be deterministically connected to the covariance of the under-
lying Gaussian densities. The horizontal axis shows the true
covariance for the two underlying signals of the sub-Gaus-
sian density, while the vertical axis shows the FLOS estimate.
Clearly , as we increase the value of p, we approach the region
where statistics are not de¯ned, and for any value of p > 0:25
(i.e., 2p > 0:5, the characteristic exponent of the L¶evy den-
sity) we have unde¯ned statistics as expected.

The plots of Fig. 13 demonstrate the connection between
the FLOS statistics and the secondorder statistics of the
Gaussian part of the signal. There exists a deterministic
correspondencewhen 2p is lower than ®u = 0:5. Similar
results can be obtained for complex signals. A generated
lookup table can, if required, provide an estimate of the
underlying Gaussian statistics.

4.4 Estimating Statistics using ML

As mentioned earlier, random initial conditions are suf-
¯cien t for the solution of eq. (62). Fig. 14 shows the
estimates for a 3-sourceproblem with

§ =

2

4
2 ¡ 1 ¡ 0:4i 1:0¡ 1:6i

¡ 1+0 :4i 4 ¡ 0:3¡ 0:8i
1+1 :6i ¡ 0:3+0 :8i 3

3

5

when the initialization vectors are the identit y matrix.

The samplestatistics are slightly di®erent from the above
depending on the length of the realization, and are plot-
ted on Fig. 14 as well. The histogram plots show on the
positive side the sample statistics, and on the negative
side the estimates of the diagonal elements of §̂ as es-
timated by eq. (62). The insigni¯can tly small complex
components of the diagonal of §̂ are ignored due to prior
knowledge. The scatter plots present the o®-diagonalel-
ements of the statistics matrix on an Argand diagram.

The dots denote the actual sample statistics, while the
estimates are shown with `£ '.

As can be observed from Fig. 14, the number of sensors
is far more important than the total number of samples.
As an example, we can seethat cases(a) and (b) have
the sameoverall number of samples,but the performance
is far superior in case(b) where the number of sensors
is 4 times the ones in (a). In fact, a signi¯can t decrease
of SNR in (c) can be compensated by an increasein the
number of sensors.Lik ewise,we can observe that even a
signi¯can t increasein SNR from (d) to (e) provides little
improvement in the accuracy of the estimates, while an
increasein the number of sourcesdramatically improves
the accuracy in (f ).
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Fig. 14: Simulations show the e®ectivenessof the separable ML estimation of statistics for a 3-source problem under various
noise conditions and array arrangements.
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Fig. 15: Sample frequency transformation of a 1st order all-
pass ¯lter

5 SUB-GAUSSIAN AND GAUSSIAN ML LOCAL-
IZATION COMPARISONS ON REAL DATA

In order to test the localization algorithm with somereal
data, we constructed two synthetic microphone arrays:
using the 10.2 channel system and ProTools we played
back several (dry) signals(Trump et, Cello, a femalevoice
in English, and a female voice in Danish). These audio
channels were played together in various combinations
through the loudspeakers at 48kHz, and 2 microphones
were shifted forming a linear array. The synchronized
playback{recording feature of ProTools, con¯rmed by
the addition of chirp synchronization signals at the start
of the recording, ensured that the array was accurately
created.
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Fig. 16: Actual frequency mapping used in the real signal ML
localization experiments

The ML function for the following caseswas evaluated
over all frequencies,by re-calculating the transformation
matrix A for all possible (µ; f ) combinations, which is a
computationally expensive process. For the localization
part, a Non-linear FFT (NFFT) [2, 19, 22] was used

ARRAY
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RC { 90± Trumpet

R

RS { 170± British Speech Echo

LC { 45± Cello

L

LS { 15± British speech

H.L

H.R { 105± Danish Speech

Fig. 17: Exp eriment setup for the 20-microphone array. An-
gles shown are relativ e to the center of the array arrange-
ment. Only the Cello and Trump et sources could be reliably
localized due to the inaccuracies in sensorplacement with the
20-microphone array.

in order to keep the resulting frequency domain signals.
Speci¯cally , we employed the method described by Mi-
tra et al in [19], with a ¯rst order all-pass ¯lter and a
30ms window (1440 samples). The resulting frequency
mapping is shown on Fig. 16, while a more visual repre-
sentation of the ¯rst-order mapping is shown on Fig. 15
with fewer taps.

5.1 20-Microphone Arra y

In the 20-microphone array case,the aperture was 38cm
and the intersensor spacing was 2cm, while 4 (originally
dry) signals (Trump et, Cello, a female voice in English,
and a femalevoice in Danish) and an arti¯cial echo of the
cello were used. These 5 channels were played together
in various combinations, although the results shown here
are basedon localization of the sourceswhen two signals
were active (the Cello and Trump et at 45± and 90± re-
spectively). This array was not very accurately spaced
and the error rate from the part where all 5 channels
were active was very large. The array setup is shown on
Fig. 17.

Results of localization demonstrate that the sub-Gaus-
sian basedML method performs signi¯can tly better than
its Gaussian counterpart. Fig. 18 shows 7s of the sig-
nal where only the cello and trump et are being played.
Each frame of the segment corresponds to a sliding win-
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Gaussian Sub-Gaussian
45± angle RMS error 16 5
90± angle RMS error 22.5 10
Overall RMS error 19.5 8

Table 2: Errors for the Gaussian based ML metho d are more
than double those of the sub-Gaussian based ML.

dow of 30ms, and the sourceswere placed at 45± and at
90± . As can be observed, the sub-Gaussian ML method
works signi¯can tly better. Table 2 shows the RMS er-
ror for this localization experiment, and reveals that the
performance of the Gaussian based ML is signi¯can tly
worse than that of the sub-GaussianbasedML.

5.2 41-Microphone Arra y

In the 41-microphone array the recording conditions are
similar to the previous case. However, the inter-sensor
spacing is 1cm, the array is much more accurately spaced
than the previous one, and the sourcesare the two speech
signals used in the previous section placed at 48± and
110± . In addition, the arrangement is such that a strong
echo is created at 90± . Fig. 19 shows the positions of
the sources,the array, and the °at screen,2 which as we
expect causesa strong sound re°ection.

48± 110±
90±

Fig. 19: Arrangemen t of 41-microphone array.

We note that, in addition to a superior performance of
the sub-GaussianbasedML, the errors of the sub-Gaus-
sian tend to be more reasonable. In other words, the sub-

2The screen is made from a synthetic material that is
highly re°ectiv e.

Gaussian Sub-Gaussian
48± angle RMS error 11.1 9.3
90± angle RMS error 13.1 6.9
110± angle RMS error 17.7 6.6

Overall RMS error 24.6 13.3

Table 3: Errors for the Gaussian based ML metho d are much
higher than those of the sub-Gaussian basedML, but compare
better under these conditions of the larger array than in the
caseof the 20-microphone array.

Gaussian algorithm incorrectly localizes sourcesmostly
in the range 50±-90± , which we believe corresponds to
the re°ections o® the console,while the Gaussian based
ML is severely in°uenced by the noise impulsiv enessand
locates sourcesmore indiscriminately . Nevertheless, the
performance di®erencedecreasesas the array sizegrows,
a similar conclusion with the performance di®erencegap
narrowing at increasing SNR's in the simulations. The
RMS error of localization for the two methods is shown
on Table 3.

6 SIGNAL RECOVERY

The accurate extraction of sound from speci¯c locations
in the room is a possible application of a large array.
We attempt to reconstruct the original English speech
signal from the 41-microphone array with the simplest
of methods to demonstrate the concept.

An overview of the signal reconstruction processis given
on Fig. 21. First, the time aligned signal blocks are
transformed in the frequency domain. The transforma-
tion into the frequency domain is the same as the one
for the ML localization, and as such, it will add no ad-
ditional computational expense. Vectors equal to the
array size are constructed from each frequency and ¯l-
tered through the frequency dependent steering vectors
w . The resulting collection of w (f )T S (f ) coe±cients
forms the frequency domain of the required signal. How-
ever, as inverseFFT is not su±cient to recover the sound
sinceit causesclicks in the signal, a phaseand amplitude
corrected sinusoid is created instead from each frequency
coe±cient. The resulting sinusoid is windowed to smooth
the transition and minimize the clicks in the ¯nal signal.
Finally , the collection of overlapping sinusoids over all
frequenciesare added to produce the sound signal esti-
mate. For improved signal qualit y, interpolation in the
frequency domain (both in amplitude and phase) can be
used before the creation of the sinusoids to produce a
better signal recovery.

Much research has beenperformed in estimating a signal
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Fig. 20: Angle estimates for Gaussian and sub-Gaussian based
ML metho ds for the 41-microphone setup.

from its short-term Fourier transform, mostly due to the
need for good compression algorithms such as MPEG.
Since compression is not an issue in our case, we used
the simple sinusoidal addition with a reconstruction win-
dow identical to the window used in the time domain
(Hanning window). A similar algorithm is described by
Gri±n and Lim in [13]. Further analysis on the subject
is given in [24, 26], however this material is beyond the
scope of this paper.

The signal recovery processwas successfulto a certain
extent, although the array size was restrictiv e. Tradi-
tional designof the focusing vector w is basedon the con-
cept that a signal can be classi¯ed assource, interference
and noise. However, in an environment where reverbera-

s0
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s�

sr
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S� (f N =2)

S0(f 0)

S1(f 0)

Sr (f 0)

S� (f 0)

w T S(f N )

w T S(f 0)

Freq.
Domain

Reconstructed
sinewaves,
windowed,
overlapping

Sum of sinewavesover all frequencies

Fig. 21: Signal reconstruction process.

tion is both the noise and interference, the \noise" level
is extremely high. Nevertheless, we have used a con-
strained algorithm that minimizes the overall response
at high frequencies,and placesadditional constraints at
lower frequencies at the other source locations (at 90±

and 110±). These correspond to the Minim um Vari-
ance Distortionless Response (MVDR) algorithm and
the Linearly Constrained Minim um Variance (LCMV)
[5, 6, 9, 10], respectively. Again, thesemethods are based
on second order measures,and better algorithms could
be used to allow for impulsiv e signals.

However, automated design fails for both methods as
they are designedfor placing speci¯c restrictions at spe-
ci¯c locations. In addition, the constraints often lead to
weight vectors of extreme amplitude range, which cause
ampli¯cation of microphone placement errors. Work in
literature such as [14, 15, 20], attempts to tackle these
issues.

The transformation at the frequency domain was at-
tempted with both the linear and non-linear FFT's. In
the case that we use the NFFT method, the resulting
signal's frequency content must be weighted with the in-
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versedensity of the frequency mapping, i.e.,

Emphasis =
±f out

max(±f out )
(68)

Fig. 22 and Fig. 23 show the obtained beampattern us-
ing the MVDR method and a non-linear frequency trans-
formation. Although the constraints are su±cient for a
large part of the frequency range, they can be too re-
strictiv e at certain frequencies,or not restrictiv e enough
at other frequencies. As an example, the constrain of
C = 1 at 48± will causea very narrow beampattern at
high frequencies, while a plateau constrain in a range
48± § 5± will cause extreme ripples; nevertheless, the
sameproblem does not appear at low frequencies.

In the design of the coe±cients of Fig. 22 and Fig. 23,
we did not place any constraints on the amplitude of the
coe±cients; however, by using only two constraints (zero
at 110± and unit y at 48± , and vice versa), the resulting
set of vectors w was well behaved.

The smaller amplitude variation on the weights clearly
producesbetter qualit y soundsat the cost of poor source
separation. In fact, attempts to use signi¯can tly con-
strained beampatterns gave a high pitch noisethat made
the resulting signal incomprehensible, while the ones of
Fig. 22 and Fig. 23 gave a better qualit y signal but with
far poorer separation. The common assumptions in the
literature that the interference source is white noise fail
to allow for thesekinds of problems, which we encounter
with real signals. Clearly, we need to further explore
methods of automatic creation of the weight space for
more constraints.

Fig. 22: Beampattern for recovery of the 48± source (English
speech) using the NFFT mapping.

Fig. 23: Beampattern for recovery of the 110± source (Danish
speech) using the NFFT mapping.

Acoustically , the best separation occurred with the
NFFT approach using emphasisas in eq. (68), and with
a block size of 30ms. However, with the Danish speech
source being much louder originally and much more re-
verberant, 3 the result in recovering only the English
speech is poor. Nevertheless, we were able to achieve
a prett y good separation in the caseof removing the En-
glish speech from the Danish one. Rough estimates from
periods of silencein one of the two signals suggesta min-
imum of 10dB attenuation of the English speech. Much
better separation can be achieved with the use of non-
linearly spacedarrays and 2-D arrangements such as in
a crosspattern.

7 CONCLUSIONS

We have presented in this work a model designedto ac-
count for signals that are dependent and impulsiv e in
nature. Such signals are often encountered in many dis-
ciplines including audio. Our present research was moti-
vated by existing work demonstrating the impulsiv eness
of sound and by the observation that reverberation is
highly dependent on the original source.

The ML solution of this model was given under a sensor
array scenario, and its separable solution was derived.
The separable solution assumesknown statistics to lo-
calize the directions-of-arriv al and known directions-of-
arriv al to ¯nd the statistics of the underlying processes.

3The console is located between the 110± loudspeaker and
the array, and the Danish speech is still much louder than the
English one at the receiving sensors. This suggests that the
Danish reverberant component is comparable in intensit y to
the direct component of the English speech.
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Although the statistics estimator could not be derived as
a closed form expression, the resulting form allows for a
fast iterativ e solution. The directions-of-arriv al estima-
tor still requires a search, but of a much smaller space.

Simulations have demonstrated the robustness of the
sub-GaussianbasedML, and encourageus to further de-
velop methods employing the sub-Gaussian, rather than
the Gaussian, model. Additionally , the performance loss
of the sub-Gaussian based ML in the case that signals
are Gaussian is insigni¯can t, which further enforcesour
robustness claim.

Real world measurements were conducted with two large
arrays (20 and 41 microphones) in our audio lab, a room
with the acousticsof a typical living room. These exper-
iments have also supported the advantages of the new
model. The sub-Gaussian based ML exhibits an im-
provement in localization up to a factor of 3 in the RMS
error versus the Gaussian ML.
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