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Abstract
Long speech-text alignment can facilitate large-scale study
of rich spoken language resources that have recently become
widely accessible, e.g., collections of audio books, or multime-
dia documents. For such resources, the conventional Viterbi-
based forced alignment may often be proven inadequate mainly
due to mismatched audio and text and/or noisy audio. In this
paper, we present SailAlign which is an open-source software
toolkit for robust long speech-text alignment that circumvents
these restrictions. It implements an adaptive, iterative speech
recognition and text alignment scheme that allows for the pro-
cessing of very long (and possibly noisy) audio and is robustto
transcription errors. SailAlign is evaluated on artificially cre-
ated long chunks of the TIMIT database. Audio is artificially
contaminated with babble noise, and the corresponding tran-
scriptions are corrupted at various levels. We present the corre-
sponding word boundary detection results. Finally, we demon-
strate the potential use of the software for the exploitation of
audio books for the study of read speech.
Index Terms: speech-text alignment, open-source, software,
imperfect transcriptions, adaptation, audio-books

1. Introduction
Speech-text alignment commonly finds applications in fields
such as multimedia indexing and training of large vocabulary
speech recognition and synthesis systems [1, 2]. Recently,it
has also been shown to be useful in the context of phonet-
ics research for the exploitation of rich spoken language re-
sources such as audio books [3]. Overall, it may be viewed as a
mechanism that simultaneously enriches spoken language tran-
scriptions with temporal information and identifies audio seg-
ments with their corresponding spoken content. Conventionally,
speech-text alignment is performed by application of the stan-
dard Viterbi-based forced alignment [4]. However, this process
may be proven inadequate in cases when the audio is contam-
inated with noise or when the transcription is not sufficiently
accurate. In this paper, we present our open-source software,
SailAlign, that circumvents these restrictions to a significant de-
gree through the implementation of an adaptive, iterative speech
recognition - text alignment scheme, sketched out in Fig. 1.

Our work has been particularly motivated by the need to
process long, noisy audiovisual data collected for the observa-
tional study of marital and family interaction in the domainof
psychology [5, 6]. The research and therapeutic paradigm in
this area involves the collection and analysis of audiovisual data
from the couples or families in focus. At a preprocessing stage,
these recordings are oftentimes manually or semi-automatically
transcribed to aid in the evaluation of the observed behavior
[7]. Fully automatic transcription is usually unreliable for these
real-environment, spontaneous recordings. The desired rich-
ness of the transcription depends on the evaluation process, but
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Figure 1:Adaptive, iterative scheme for robust long speech-text
alignment

for practical reasons it is only at the word-level. In this context,
robust speech-text alignment can facilitate exploitationof spo-
ken language properties of these interaction-related multimodal
data [8, 9].

The robust long speech-text alignment approach imple-
mented by SailAlign builds upon the iterative segmental ap-
plication of a large vocabulary continuous speech recognition
system, as introduced by Moreno and his colleagues [10]. The
main idea in [10] is based on the assumption that with a suf-
ficiently good speech recognition engine, it is possible to pose
the speech-text alignment problem as a text-text alignmentone.
Solution of the latter is normally much less computationally
demanding. After selecting regions where alignment is reli-
able, based on prescribed criteria, the process is iteratedon
the remaining unaligned regions. Language modeling becomes
region specific, resulting in improved recognition and conse-
quently improved alignment. This segmental processing hasthe
additional advantage that it hinders possible local errorsfrom
propagating.

Researchers have proposed variations of this system to bet-
ter cope with imperfect transcriptions [11, 1]. Finite state au-
tomata have been used to account for insertions, deletions,
and/or substitutions of the transcribed words. SailAlign also
implements a finite state grammar approach at the final stage
to appropriately constrain the alignment search space if neces-
sary. Regarding noise robustness, in [10] Moreno suggestedthat
processing of noisy audio does not necessarily cause a drop in
alignment performance. He even presented successful results
of the iterative approach after the addition of white noise to the
audio at 15dB to support this claim. SailAlign further improves
robustness by label boosting [12], i.e., adaptation of the acous-
tic models at every iteration to account for mismatched acoustic
conditions.

SailAlign has already found real world applications as men-
tioned above [8, 9] in the alignment of real interaction datawith
noisy transcripts. However, due to the lack of reference align-
ments in that setting it is impossible to quantitatively assess the
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quality of these alignments. We therefore evaluate SailAlign’s
performance using the TIMIT database [13] by creating long
sequences of audio through the concatenation of TIMIT seg-
ments. The resulting corpus provides us with the ground truth
information of word alignments. We use this corpus to compare
SailAlign with the conventional Viterbi-based forced alignment.
To challenge the robustness of the system, we also artificially
add noise to the audio and corrupt the transcriptions at vari-
ous levels. Finally, we present a pilot experiment on the useof
SailAlign for processing four audio books, i.e., four versions of
Jane Austen’s “Emma” as read by four different speakers [14].

2. Adaptive Long Speech-Text Alignment
2.1. Algorithm

SailAlign implements the adaptive, iterative speech-textalign-
ment algorithm described as Algorithm 1 using pseudocode.
As mentioned earlier, at the core of the algorithm lies the as-
sumption that the long speech-text alignment problem can be
posed as a long text-long text alignment problem given a well-
performing speech-text conversion tool, i.e., speech recognition
engine. Given that the text-text alignment problem can usually
be solved quite efficiently even for long text using dynamic-
programming to minimize the Levenshtein distance between the
reference and the hypothesized text, the main bottleneck isthen
at the speech recognition part. The algorithm can be outlined as
follows:

Initialization The audio stream has to be segmented into
smaller chunks whose duration is constrained by com-
putational limitations of the speech recognition engine
used (approximately 10 to 15 seconds in our case). To
avoid cutting a word into two, segmentation is guided by
a voice activity detection module. For efficiency, seg-
mentation is performed in the acoustic feature domain
and not in the audio domain. In this way, acoustic feature
extraction is carried through only once and not repeated
for every repartitioning of the input stream. Repartition-
ing will be necessary at subsequent iterations. Acous-
tic features are extracted from the audio stream. To en-
sure that the speech recognition output will be as close
as possible to the reference transcription, a transcription-
specific language model is built at this point.

Speech Recognition, Text-Text AlignmentContinuous
speech recognition is then applied to identify the
lexical content of the individual speech segments. The
hypothesized transcripts are concatenated into a single
one, which is then aligned with the reference transcript.
Reliably aligned regions are selected by applying a
minimum-number-of-words criterion, i.e., they should
include at least a minimum number of consecutive
aligned words. The rest of the audio is considered to
be unaligned and it is repartitioned into segments of
appropriate length. The transcription is also partitioned
appropriately this time to leave the aligned regions out.
The recognition-text alignment cycle will be repeated
for only the unaligned audio and text segments.

Acoustic and Language Model Adaptation To improve
noise robustness, we adapt the acoustic models at each
iteration in a supervised manner using the reliably
aligned regions. Maximum Likelihood Linear Regres-
sion [15] is applied and adaptation is performed in two
steps. First, we train a global transformation and then,

Algorithm 1 The SailAlign speech-text alignment algorithm
Require: Audio file and corresponding transcription (word se-

quenceS)
Ensure: Time-aligned transcription (S, T )

1: Detect speech regions by Voice Activity Detection (VAD)
2: Extract acoustic featuresA from the audio signal
3: E0 ← Generic acoustic models
4: U0 ← (A, S) {Unaligned acoustic features and the corre-

sponding word sequence}
5: for i=1 to 5do
6: for all N segments inUi−1 do
7: An ←acoustic features of the segment
8: Sn ← corresponding word transcript
9: SegmentAn in Kn subregions{Ank} of approx-

imate durationD {Given VAD timestamps, ensure
that breaks are not within words}

10: if i < 4 then
11: Build a trigram language modelLn onSn

12: else
13: Build a finite state grammarLn onSn

14: if i = 5 then
15: Do not allow insertions or deletions
16: end if
17: end if
18: for k=1 toKn do
19: (Rnk , Tnk) = SpeechRecognition(Ank , Ei−1,

Ln)
{Rnk is the word sequence,Tnk the corre-
sponding set of temporal word boundaries}

20: end for
21: end for
22: (R, F )←

S

n,k(Rnk , Tnk)

23: Align word sequencesS andR using Dynamic Program-
ming to minimize Levenshtein distance

24: {(Aim, Oim, Tim), m = 1 to M} ← Subsequences of at
least three aligned words and the corresponding acoustic
features{Anchors}

25: if i < 4 then
26: Ei ← Adapted acoustic models on

{(Aim, Oim, Tim)} using regression class tree-
based Maximum Likelihood Linear Regression
(MLLR)

27: else
28: Ei ← E3

29: end if
30: {Pj , j = 1 to J} ← S \

S

m Oim

31: {Aj , j = 1 to J} ← A \
S

m Aim

32: Ui ← {(Aj , Pj), j = 1 to J} {Collection of unaligned
segments and their untimed transcriptions}

33: end for
34: (S, T )←

S

i,m(Oim, Tim)

for groups of phonemes in which we have sufficient
adaptation data, we build a class-based transformation.
The language models are also updated so that they
are trained specifically for each unaligned region.
This process, i.e., recognition-alignment-adaptation, is
iterated three times. In the subsequent two iterations,
the acoustic models are not adapted, and the language
model is described by a constrained finite state grammar
which only allows the expected sequence of words for
the segment (and insertions/deletions for the fourth
iteration). This is expected to further increase the
number of aligned regions in the case of very noisy
audio.

2.2. Implementation

SailAlign is implemented as a library of Perl modules, appropri-
ate wrapper scripts, configuration files, and a collection oftools;
the tools are either packaged with the software (e.g., the voice
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activity detection binary), or they can be accessed separately
at their corresponding repositories (e.g., the HTK toolkit[16]).
Although SailAlign is configurable and has been designed to
allow for interchangeable use of various versions or implemen-
tations of the separate required tools, the package that we cur-
rently release has only been tested with a specific choice of the
speech recognition engine, language model building, text-text
alignment, and acoustic feature extraction tools.

Voice activity detection (VAD) is currently performed by
a separate software that implements the algorithm described in
[17]. VAD is not crucial in our setup, and it could even be
replaced by a simple energy thresholding algorithm. Segmenta-
tion of the feature sequence into smaller segments is performed
by an appropriately modified version of the chtrack tool that
is provided as part of the Edinburgh Speech Tools Library [18].
For feature extraction and speech recognition, we use the HTK
toolkit [16]. The HTK tools that are required cannot be pack-
aged with SailAlign due to license restrictions and have to be
downloaded and compiled separately.

The acoustic models currently used are triphone generic
models trained on the Wall Street Journal and TIMIT corpora
and are available online [19]. The acoustic features extracted
from audio after preemphasis with a coefficient of 0.97 are
13 mean-normalized Mel Frequency Cepstral Coefficients us-
ing a 26-channel filterbank and their first and second deriva-
tives every 10ms with a 25ms Hamming window. Pronunci-
ations for each word in the transcription are generated using
the CMU pronunciation dictionary [20], while additional dic-
tionaries can also be used. Trigram language modeling is done
by means of the SRILM toolkit [21], and we used Witten-Bell
smoothing which is appropriate for language models built on
limited datasets [22]. Text-text alignment is performed bythe
NIST sclite Scoring Package. SailAlign is released as open-
source software and is available at:http://sail.usc.
edu/software.php .

3. Experiments
The performance of SailAlign was evaluated in a word bound-
ary detection task in the TIMIT database. We present the corre-
sponding findings. Further, we present a pilot experiment using
SailAlign to extract reading style information from audio books.

3.1. Word Boundary Detection in the TIMIT Database

Comparison of SailAlign with the standard Viterbi-based forced
alignment was performed on an artificially created 1-hour au-
dio chunk of the TIMIT database and its transcription. This
was generated by randomly concatenating TIMIT audio record-
ings. By properly offseting the corresponding segmental tran-
scriptions we were able to also generate the 1-hour audio chunk
transcription and ground-truth alignment. The chunk duration
was chosen to be similar to the duration of an audio book chap-
ter. Alignment results for both algorithms are given in Fig.2
for various tolerance levels. A word is considered to be aligned
if each of its aligned boundaries differ from the corresponding
ground truth start and end times less than the specified toler-
ance. Performance of both algorithms is similar. Also note that
SailAlign does offer the possibility of post-processing resulting
alignments with a Viterbi alignment step, although for clarity in
the comparisons we did not use that functionality in this paper.

The real advantage of SailAlign becomes apparent when the
audio is noisy or transcriptions are imperfect. To evaluatethe
robustness of the algorithm in such cases, we contaminated the
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Figure 2: Top: Histogram of word durations for the 1-hour seg-
ment of the TIMIT database. Bottom: Percentage of aligned
words using SailAlign or the Viterbi-based forced alignment.

TIMIT audio chunk with babble noise at various levels, and we
corrupted the transcription by randomly introducing insertion,
deletion, and substitution errors. Corresponding word align-
ment results are shown in Fig. 3 for a tolerance of 50 ms. Given
that most of the words in the chunk have duration at least three
times longer (Fig. 2, left ), the choice of this tolerance level is
reasonable. It appears that even in the cases of very low signal-
to-noise ration (SNR), i.e., 10 and 5 dBs, SailAlign still pro-
vides acceptable results while the Viterbi-based forced align-
ment fails. Similarly, for imperfect transcriptions, evenwhen
10% of the transcribed words are corrupted, SailAlign is robust
enough to provide accurate alignment while Viterbi fails after
the 3% corruption point.

3.2. Processing “Emma”

Using SailAlign, we processed four read versions of the book
“Emma” by Jane Austen by four different speakers. On aver-
age, 150.090 words are aligned for each speaker and the cor-
responding average speaking time is approximately 11h and
17mins. We estimated the durations of all the spoken words
and quantized them in 100 bins. We were then able to measure
the frequency of appearance of each quantized duration value
in each speaker’s version. We show the log-log plot of these
frequencies sorted in descending order versus the correspond-
ing ordering rank in Fig. 4. Differences between the different
contours are assumingly related with reading style differences
among the readers. For example, the reader SC appears to use a
significantly greater range of durations when reading.

4. Conclusions

We presented SailAlign, an open-source software that imple-
ments an adaptive, iterative long speech-text alignment al-
gorithm. Alignment experiments with the TIMIT database
demonstrate the increased robustness of the algorithm com-
pared with the standard Viterbi-based forced alignment algo-
rithm. Even when the transcription is imperfect or the audiois
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Figure 3: Top: Aligned words for various audio noise levels.
Results for four cases are shown, i.e., SailAlign, SailAlign
with acoustic model adaptation activated (SailAlign+),
Viterbi forced alignment and alignment with adapted models
(Viterbi+). Bottom: Aligned words for various levels of
transcription corruption.

noisy, SailAlign manages to provide accurate alignment results
while the standard forced alignment may fail. Results of a pi-
lot experiment, run on four spoken versions of “Emma,” further
show the potential of the use of SailAlign for the exploitation
of rich spoken language resources such as collections of audio
books.
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