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Abstract
The need for reliable, scalable and efficient diagnosis of Parkin-
son’s Disease (PD) is a major clinical need. Automating the
diagnosis can lead to more accurate and objective predictions
as well as provide insights regarding the nature of Parkinson’s
condition. This paper proposes a fully automated system to rate
the severity (UPDRS-III scale) of PD from patients’ speech.
Specifically, the system captures atypicalities in an individ-
ual’s voice when performing multiple diverse speaking tasks
and makes a unified prediction of the PD severity. The perfor-
mance is tested in a cross-data setting, with different subjects
and dissimilar recording conditions. Results indicate that (i)
effective features vary depending on the nature of the specific
speech task, (ii) additional novel feature sets to detect distor-
tions in Parkinson’s speech significantly improve the prediction
accuracy from the Interspeech15 Challenge baseline system and
(iii) our fusion system based on an unsupervised clustering tech-
nique also improves the accuracy. Our system incorporates i-
vector and functionals for segmental features, non-linear time
series features, speech rhythm and automatic speech recogni-
tion decoding based features. By its application on the Inter-
speech15 eating condition challenge, the system also shows its
potential for detecting other sources of speech variability.
Index Terms: Pathological speech, Automatic severity estima-
tion, Parkinson’s disease

1. Introduction
Parkinson’s Disease (PD) is a neuro-degenerative disorder
affecting the quality of life profoundly. Degeneration of
dopamine-producing cells (dopaminergic neurons) in the brain
causes defects of speech motor controls, resulting in a variety of
atypicalities in the produced speech sound. Although patient-
dependent, common effects of PD on the speech signal include
reduced loudness (hypophonia), reduced pitch inflection (hy-
poprosodia), reduced stress, breathy and hoarse voice quality
(dysphonia), imprecise articulation, defective speech rate, and
rhythm [1, 2, 3, 4]. Various types of speech disorders motivate
holistic information processing on pathological speech: captur-
ing broad spectrum of speech acoustic cues. Over the last few
decades, there has been sporadic interest in the characterization
of those symptoms as well as the assessment of severity from
paralinguistic cues in speech of Parkinson’s patients.

Evaluation of PD severity is essential for constant therapy
and monitoring of the PD patients. Despite the huge demand
for objective, accurate and robust assessment in clinical prac-
tice, the state-of-the-art evaluation method still relies on sub-
jective judgments by human experts, which are costly and time-
consuming. In this regard, there have been efforts to develop an

automatic evaluation system, especially using the speech of the
patients. The use of speech has advantages over other diagnosis
methodologies, because (i) most of the PD patients suffer from
speech disorders and (ii) data acquisition is relatively easy and
convenient, and can be done remotely, and continuously.

In the literature, most early studies [5, 6] are based on spe-
cific speech tasks, such as sustained vowels or specific word
lists. This is useful for minimizing acoustic variability from
other sources, e.g., lexical variations, and facilitates robust fea-
ture extraction. However, such a limited speech task is not
ideal for the patients to display their various types and facets
of speech disorders, e.g., in intonation, rhythm, articulation and
breath control. Recently, there have been efforts toward devel-
oping a comprehensive analysis which considers both segmen-
tal and supra-segmental aspects of speech production, based
on diverse speech tasks, including read speech tasks of vari-
ous lengths, spontaneous speech and fast repeating speech (each
exercising different facets of the production system). The goal
of the automatic evaluation evolved to clinically more relevant:
from binary decisions [7, 8] (the presence of PD or not) to re-
gression in realistic assessment scales, e.g., the Unified Parkin-
son’s Disease Rating Scale (UPDRS) [2]. The present paper
proposes a fully automated method to rate the severity of PD pa-
tients using vocal data drawn from diverse speech tasks with the
audio recordings collected under the Interspeech 2015 Parkin-
son’s Condition (PC) Sub-Challenge [9] .

The novelty of the proposed method lies in both feature en-
gineering and the applied machine learning methods in the sys-
tem development. First, we found that non-linear time series
analysis on (estimated) glottal source signal and its delta are
useful for rating the PD severity for various speech tasks. Sec-
ond, we found that multi-level unsupervised clustering schemes
help to provide a more accurate clustering for similar UPDRS
scores. Finally, our system provides, in a fully automatic man-
ner, a joint rating score for speech of Parkinson’s patients col-
lected from diverse speaking tasks.

In addition to the PC Sub-Challenge, we also target in this
paper the Eating Condition (EC) Sub-Challenge. The idea is to
explore how the feature engineering and machine learning can
be repurposed for an entirely different domain. For the EC task,
we apply our system on speech recorded from different speakers
with the goal to classify the eating conditions, i.e. presence or
absence of food and type of food, when they were speaking [9].

The outline of the paper is as follows. We explain the details
of the data pre-processing and unsupervised clustering methods
in Sections 2 and 3. Sections 4 and 5 describe our feature
sets, regressors and fusion systems. Experimental results and
discussion are provided in Section 6. Finally, we conclude in
Section 7 with a summary and future directions.
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2. Data and Pre-processing
See [9, 10] for the details of the datasets used for the PC Sub-
Challenge and the EC Sub-Challenge. The baseline feature sets,
namely “ComPaRE set” comprise functionals of low-level de-
scriptor (LLD), i.e., prosodic, spectral, voice quality and voice
source features. The feature sets extracted using the latest ver-
sion (ver. 2.1) of OpenSMILE [11] are provided.

To predict transcripts (phone sequences) of the dataset,
we performed Automatic Speech Recognition (ASR) using
KALDI [12]. A triphone acoustic model was trained on Mex-
ican Spanish Broadcast news corpus [13] to learn the charac-
teristics of normal Spanish speakers’ speech. It is noted that
the performance of the present system can be improved by us-
ing speech data of Colombian Spanish for model training. Two
language models were used; one was a unigram model trained
using only the stimuli for the read speech utterances, while the
other was a trigram model trained using the entire Mexican
Spanish corpus only for monologue. Phone sequences of each
utterance were decoded from corresponding phone lattice.

In order to minimize the variability due to speech tasks (task
information was not provided in the test set), we estimated the
type of speech task of each utterance, based on the phone se-
quences. For the training and development sets, the speech task
label for each utterance is assigned depending on corresponding
stimulus as follows: ‘0’ for isolated words, ‘1’ for rapid repe-
tition of syllables, ‘2’ for text and monologue (long speech),
and ‘3’ for sentences. We used a k-Nearest-Neighbor (KNN)
classifier with Euclidean distance metric to estimate the task la-
bel (0–3) of each utterance. The counts for individual phones
were used as the features for the classifier. Results of four-folds
cross-validation on the training set indicates that k=1 shows the
best performance: 98.9%, 97.1%, 98.2% and 97.9% for each
fold, respectively. KNN classification accuracy on the develop-
ment set with k=1 is 98.9%, which indicates reliable estimation
performance of this method.

In order to remove silence and short pauses in the speech
waveforms, we performed Voice Activity Detection (VAD)
based on Root Mean Squared (RMS) energy; Voiced if RMS
energy of the frame > 10% of the 0.9 quantile in the utterance;
Unvoiced otherwise.

3. Unsupervised Clustering
Our working hypothesis for using unsupervised clustering is
that predicting UPDRS labels jointly for utterances that are
very close in the acoustic feature space can reduce rating error.
In fact, a joint rating approach makes sense for the PC Sub-
Challenge, because the level of PD severity is evaluated for in-
dividual patients, not for each speech utterance. We tested this
hypothesis using a single Gaussian-based bottom-up agglom-
erative hierarchical clustering method [14]. Linear predictive
coding was used to represent the acoustic feature space. Gen-
eralized likelihood ratio [15] was used as inter-cluster distance
measure. This off-line clustering method has shown satisfactory
performance improvement for predicting other speaker traits in
previous studies [16, 17].

Clustering accuracy depends on the spoken content, be-
cause the acoustic characteristics of speech from the same stim-
ulus can be similar. Hence, we performed multi-level cluster-
ing in order to minimize clustering error due to lexical similar-
ity. First, we performed utterance-level clustering within (es-
timated) speech task. Next, we determine the optimal pairs of
clusters across tasks in order to apply task-dependent cluster

Measure Mean STD

All-task clustering Majority ratio 0.70 0.24
STD of labels 8.19 5.14

Within-task clustering Majority ratio 0.90 0.18
STD of labels 3.08 5.35

Multi-level clustering Majority ratio 0.85 0.11
STD of labels 6.35 3.86

Table 1: Clustering performance on the development set in
terms of (i) majority ratio and (ii) standard deviation (STD) of
UPDRS labels. ‘Original’ indicates clustering on all speech
tasks together (baseline); ‘Within-task clustering‘ indicates the
bottom level clustering; ‘Multi-level clustering’ indicates the
merged clusters.

merging. For the distance metric between clusters, we exam-
ined metric functions of derived from utterance-wise distances
(mean, minimum, maximum and quantiles). For example, the
metric min. indicates the Euclidean distance of the pair of the
closest files, one from each cluster (the two clusters are from
different speech tasks). We compared their performances in
terms of the mean of the difference of UPDRS labels in the final
(merged) clusters. Table 1 shows that the multi-level clustering
performs better than all-task clustering in terms of both majority
ratio and standard deviation of labels, and close to within-task
clustering which is the upper bound method. These clustering
outputs are used for joint rating techniques, which will be de-
scribed in Section 5.

4. Feature extraction
This section discusses a variety of speech features to capture
atypicalities in PD patients’ speech, displayed in diverse speech
tasks. Frame-level features are transformed to utterance-level
features using (i) statistical functionals and (ii) i-vector sys-
tem approach. Other utterance-level features (e.g., stability and
irregularity in time series) are also examined. Details of the
frame-level and utterance-level features are provided in below.

4.1. Frame-level features

Our spectral features comprise Mel-Frequency Cepstral Co-
efficients (MFCCs), Mel-Frequency Banks (MFBs), spec-
tral shape functionals features ([10.0 25.0, 50.0, 75.0, 90.0]
rolloffs, flux, entropy, variance, skewness, kurtosis, slope
and their derivatives), Gammatone Frequency Cepstral Coef-
ficients (GFCCs) [18], Gabor features (GBF) [19], spectro-
temporal modulations [20], and long-term spectral variabil-
ity profile [20]. Prosodic features consist of f0 and Root-
Mean-Squared (RMS) energy. Voice quality features comprise
Harmonics-to-Noise-Ratio (HNR), jitter and shimmer. We used
Praat [21] to extract HNR, and OpenSMILE [11] to extract
MFCCs, MFBs, spectral shape features, jitter and shimmer,
with 25 msec window and 10 msec window shifting.

Phone posteriors computed from the ASR lattice can reflect
acoustic variability. Specifically, a spiky posterior distribution
may indicate high confidence of the normal speech model [22],
implying that the spoken utterance matches the acoustic charac-
teristics of normal speakers well. The posterior distribution is
characterized using an entropy measure: lower (higher) entropy
indicates more (less) spiky distribution. The triphone acoustic
model in Section 2 is used for generating posteriors (one for
each phone class) for each time frame in an utterance. Then, we
compute entropy from the posteriors for each time frame.
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4.2. Utterance-level features

The frame-level feature streams of the previous section are
transformed into utterance-level features. To this end, we ex-
amine the use of (i) functionals and (ii) an i-vector extraction
methodology.

The functionals comprises [0.1 0.25 0.5 0.75 0.9] quan-
tiles, interquartile range, kurtosis and skewness of the feature
streams, and were applied on the speech-only regions of the
audio recordings. We also computed the functionals in the con-
sonant regions and vowel regions separately.

In the i-vector system, we first trained a Universal Back-
ground Model (UBM) on each feature representation individu-
ally using all available training and development set data. To in-
crease the noise robustness, mean- and variance-normalization
on a per utterance basis was applied on all feature streams. We
then trained a single i-vector subspace by jointly exploiting all
UBMs using the UBM-fused total variability modeling tech-
nique that was proposed in [23]. The resulting i-vectors then
yield a low dimensional utterance-level representation on which
subsequent regressors can be applied. On the EC task, we found
that an additional speaker normalization applied on the i-vector
space further increases the classification accuracy. We refer to
our paper on the Interspeech 2014 Challenge [24] for more de-
tails on the i-vector system and the speaker normalization strat-
egy.

4.2.1. Non-linear time series analysis

One of our working hypotheses is that aperiodicity and irreg-
ularity exhibited in pathological speech is correlated with the
severity of Parkinson’s disease. In the literature, prior work
has pointed to the promise of Nonlinear Time Series Analy-
sis (NTSA) in capturing PD related atypicalities in the speech
waveform of sustained vowels [6]. In the present paper, we ex-
plore the utility of a few NTSA methods to capture the (nonlin-
ear) atypicalities in the prosodic feature streams (f0, RMS en-
ergy after smoothing), glottal source signal and its delta, and the
speech waveform for the four speech tasks. The glottal source
signal was estimated using the pitch synchronous iterative adap-
tive inverse filtering method [25].

The list of NTSA methods we examined is as follows:

• Correlation Dimension (CD): This dimension provides
cues of the geometric complexity of the time series in the
phase space. Higher dimension indicates more complex
dynamics of the signal. The present study determines the
optimal CD based on Taken’s estimator method [26].

• Largest Lyapunov Exponent (LLE): LLE indicates the
stability of the dynamic system over time. A pos-
itive (negative) exponent implies divergence (conver-
gence). The present study computes the average expo-
nential growth of inter-orbit distance (in the phase space)
through the prediction error. We estimated LLE using a
direct method [27].

• Fractal Dimension (FD): FD is a relative measure of the
number of basic building blocks forming the signal. We
computed two types of FDs: one from the raw time series
(in the time space), and the other from the time-delay
reconstructed time series (in the phase space). We used
the Petrosian’s algorithm [28] for the former, while we
used moments of neighbor distances for the latter.

We determined the optimal time delay at the first local
minimum point of auto mutual information. We estimated the
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(a) 90% quantile of LLE from speech waveform
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(b) 90% quantile of LLE from glottal flow derivative

Figure 1: Linear model (red color) overlaid on the scatter plots
of the best NTSA feature from speech waveform or glottal flow
derivative v.s. the UPDRS label.

minimum embedding dimension, using the Cao’s method [29].
For each time series, we computed CD, LLE, LLE from the
smoothed p(x) plot, where p is the average exponential growth
of the distance of neighboring and x is the number of time steps.
We also computed FDs in both time and phase spaces, resulting
in five NTSA features in total. For f0 and RMS-energy time se-
ries, we computed the five NTSA features at the utterance level.
For the speech waveform, glottal flow and its delta, we first
computed the five NTSA features for each of short time win-
dow (0.4 sec.) in the speech regions, then computed statistics,
such as mean, standard deviation, median, interquartile range,
max., min. and [0.1 0.9] quantiles.

Figure 1 illustrates the scatter plots for the individual NTSA
features (x-axis) and the UPDRS label (y-axis), only for the task
of rapid repetition of syllables as examples. The most corre-
lated features (i.e., 90% quantiles of LLEs) from speech wave-
form and glottal flow derivative, to the UPDRS label are cho-
sen in Figure 1a and Figure 1b, respectively. The Spearman
correlations of the features are −0.33 (speech waveform) and
−0.34 (glottal flow derivative). The p-values of the linear mod-
els (red color in Figure 1) are 1.6×10−7 (speech waveform) and
1.7×10−7 (glottal flow derivative). The statistically significant
negative relations between UPDRS rating and the features in-
dicate less fluctuation of signals within short-time segments for
patients with high PD severity.

5. System Development
We tested several schemes such as stacked generalization [30],
ranking [31] and regression [32] for predicting the Parkinson’s
severity. The best system in our cross-validation experiments
was a Support Vector Regressor (SVR), trained on a selected
set of features. We pool all the proposed features and per-
form a 3-stage filter feature selection including: (i) discard-
ing features with Spearman correlation with target labels be-
low a threshold (on the training set), (ii) if a set of features
is highly correlated, we retain only one feature in the group,
and (iii) removing features with highly dissimilar distributions
across training and evaluation (development or test) sets. For
the step (ii), we group features with correlations amongst them-
selves above a threshold (empirically set to 0.98) and retain
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Devel set
Spearman Pearson

∗Baseline (C=10−3) 0.49 –
∗Baseline (C=10−5) 0.37 –
Fusion 0.51 0.24
Joint rating 1 0.50 0.59
Joint rating 2 0.53 0.63

Test set
Spearman Pearson

∗Baseline (C=10−3) 0.24 –
∗Baseline (C=10−5) 0.39 –
Joint rating 2 on 0.43 0.37Baseline (C=10−5)
Joint rating 2 on 0.42 0.44Fusion

Table 2: Spearman and Pearson correlations of the final systems
for the PC Sub-Challenge. ‘Joint rating 1’ refers to the within-
task within-cluster joint rating. ‘Joint rating 2’ refers to the
within-merged-cluster joint rating. Results with ∗ are adopted
from the baseline paper. The cell of the best performance is
highlighted.

the feature which is most normally distributed according to the
Kolmogorov-Smirnoff test [33]. The step (iii) was designed to
take care of mismatch between the training and test sets. Em-
pirical study of the data revealed that several features have dif-
ferent distributions on the training, the development and the test
sets. For a feature f , we compute its mean and standard devi-
ations on train (μf

train, σ
f
train), development (μ

f
dev, σ

f
dev) and test-

ing set (μf
test, σ

f
test). While training a model to evaluate perfor-

mance on development set, the feature f is retained only when
μ
f
train − σ

f
train < μ

f
dev < μ

f
train + σ

f
train. A similar operation is

performed while training a model for evaluation on the test set.
Note that this may lead to a different set of features getting se-
lected during evaluation on development and test sets. There-
fore, we train two seperate SVRs to evaluate performance on
development and testing set. Finally, we performed two joint
rating approaches using clustering and cluster-merging outputs.
One (‘Joint rating 1’ in Table 2) is to impose the median of
each cluster in individual speech tasks, to all files of the cluster.
We refer to this as the within-task within-cluster joint rating.
The other (‘Joint rating 2’ in Table 2) is to impose the median
of the optimal task, which has the minimum sum of cross-task
distances, to all merged clusters. We refer to this as the within-
merged-cluster joint rating.

In the system on the EC Sub-Challenge, the classification
was done by training an SVM with polynomial kernel (fifth or-
der) on either the functionals or the i-vectors extracted on the
training utterances using the annotated food types as class la-
bels. System combination was performed by linear fusion of
the SVM output posteriors. Just as in [9], we applied a leave-
one-speaker-out cross-validation (LOSO-CV) to find the opti-
mal parameter settings for the test set.

6. Results and discussion
6.1. Parkinson’s Condition

Table 2 shows results for final predictions on the development
set and preliminary results on the test set. We generated the fi-
nal prediction labels using early feature fusion scheme and joint
rating approaches. The correlations of ‘Joint rating 2’ are higher
than those of ‘Fusion’ on the development set, suggesting that

Train CV Test set
Baseline 61.3 65.9
Functionals 65.3 -
I-vectors 75.7 -
System fusion 76.2 74.6

Table 3: Spearman correlation of the final fusion systems for
the EC Sub-Challenge. The cell of the best performance is high-
lighted.

within-merged-cluster joint rating approach reduces the predic-
tion errors successfully. Although the Spearman correlation of
‘Joint rating 1’ is slightly lower than that of ‘Fusion,’ Pearson
correlation of ‘Joint rating 1’ is significantly higher than that of
‘Fusion,’ suggesting that within-type within-cluster joint rating
approach is useful for prediction performance. On the test set,
we applied the within-merged-cluster approach on the baseline
feature sets and the fusion system. Results indicate that our fi-
nal system (‘Fusion’ + ‘Joint rating 2’) is capable of generating
more accurate rating than the baseline system. Although joint
rating on ‘Fusion’ shows slightly lower Spearman correlation
than joint rating on the baseline features, the gain for Pearson
correlation is significant. These results suggest the usefulness of
our proposed features for better severity rating of PD. A higher-
Pearson and lower-Spearman case (‘Joint rating 1’ in Table 2)
indicates that the predicted labels have better linear relation with
the true labels, but the relative ordering of predicted values is
worse.

6.2. Eating Condition
We used Unweighted Average Recall (UAR) as the evaluation
metric of our system, defined as the unweighted (by number of
utterances in each class) mean of the percentage correctly clas-
sified in the diagonal of the confusion matrix. Table 3 presents
the numbers on the training set (using a 20-fold LOSO-CV strat-
egy) and test set. From Table 3 we conclude that the i-vector
system provides the highest classification accuracy in terms of
food types. We obtained an additional increase in performance
by fusing the i-vector system with the SVM posteriors from the
functionals (bottom row in Table 3).

7. Summary and future works
This paper addresses the PC Sub-Challenge mainly and pro-
poses novel features for capturing various paralinguistic cues,
in particular irregular and atypical aspects in speech signal. We
use the features to train models which do not only account for
a mismatch in the data splits, but also incorporate acoustic sim-
ilarity of utterances into the final severity rating. Our results
show that the proposed features and models improve the base-
line system. The potential of the proposed features is further
supported by their performance in the EC Sub-Challenge.

Our future works include further investigation into the na-
ture of the two Sub-Challenge problems. For instance, the
Parkinson’s severity rating does not only present a challenge
of reliable prediction, but also accounts for a mismatch in the
data splits, e.g., different recording conditions and patients. Ad-
dressing these issues using machine learning techniques, e.g.,
features adaptation [34] and semi-supervised learning meth-
ods [35], is a part of our future works.
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