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ABSTRACT

We address the challenge of interpreting spoken input in
a conversational dialogue system with an approach that aims
to exploit the close relationship between the tasks of speech
recognition and language understanding through joint model-
ing of these two tasks. Instead of using a standard pipeline ap-
proach where the output of a speech recognizer is the input of
a language understanding module, we merge multiple speech
recognition and utterance classification hypotheses into one
list to be processed by a joint reranking model. We obtain
substantially improved performance in language understand-
ing in experiments with thousands of user utterances collected
from a deployed spoken dialogue system.

Index Terms— Automatic speech recognition, Interac-
tive systems, Natural language processing, Supervised learn-
ing

1. INTRODUCTION

Many spoken dialogue systems are based on a pipeline struc-
ture that includes separate modules for automatic speech
recognition (ASR), natural language understanding (NLU),
dialogue management, language generation and speech syn-
thesis. Once speech input is received, the output of each of
these modules is passed as input to the next module until
speech output is produced. Although more sophisticated al-
ternatives exist, e.g. to achieve incremental processing [1] or
to support sophisticated cognitive architectures [2], the sim-
ple pipeline view between ASR and NLU is widely used, and
is assumed in popular spoken dialogue system toolkits, such
as the CSLU Toolkit [3] and the CMU Olympus Toolkit [4].

The pipeline assumption between ASR and NLU allows
for greater modularity in the system, with ASR being respon-
sible exclusively for transcribing the audio signal as text, and
NLU being responsible exclusively for interpreting text in-
put. However, perfect transcription of spoken user input is be-
yond the capabilities of current ASR technology, especially in

conversational systems, such as virtual human dialogue sys-
tems [5, 2]. In many virtual human systems, speech recogni-
tion errors can be tied directly to degradation in system per-
formance [6].

Motivated by the idea that recognition of the words in
an utterance and interpretation of that utterance are two pro-
cesses that are more intimately connected than a simple unidi-
rectional pipeline suggests, we examine the use of combined
information from ASR and NLU in a reranking framework
that attempts to model aspects of the two tasks jointly. More
specifically, we rescore speech hypotheses in the form of n-
best lists generated by one or more ASR engines by taking the
NLU interpretation of these hypotheses into account. In con-
trast to approaches that aim to improve speech recognition,
for example by correcting ASR output [7], reranking ASR n-
best lists [8] or rescoring lattices [9], our approach is focused
on improving the dialogue system’s capability to understand
speech input, not word error rates (WER). In the experiments
presented in this paper, we assume a simple form of natural
language understanding for dialogue systems that consists of
assigning a category label to each user input utterance. The
category labels in the dialogue system correspond roughly to
dialogue acts. However, the overall approach we present is
flexible with respect to NLU approach and representation, and
could be applied in a variety of situations involving different
systems with spoken input.

We note that the work described here is not intended as
a method to improve word error rate in automatic speech
recognition; our goal, instead, is to improve the accuracy of
natural language understanding in spoken dialogue systems.
The main contributions of this paper are: 1) the development
of a reranking method that combines ASR n-best lists and
NLU to achieve a significant increase in NLU performance
compared to the standard pipeline approach, even when that
pipeline includes a discriminative language model based on
a reranker without NLU information; and 2) we show that
this new reranking method can use multiple n-best lists from
different ASR engines to achieve even higher performance.



This paper is organized as follows: in Section 2 we de-
scribe the data used to develop and evaluate our approach. In
Section 3 we describe our experiments and results. Finally we
conclude in Section 4.

2. DATA

We use a subset of the Twins corpus [10] that contains an-
notated speech files of interactions with two virtual museum
guides who are located in the Boston Museum of Science
[11]. Each audio file contains a question asked by a museum
visitor to the twins and was transcribed and annotated with
an appropriate system response, if it was deemed within the
twins domain, or with the category off-topic, if it was not.
There are 168 unique response labels, each of which corre-
sponds to some dialogue by one or both twins in response to
a user question. Some examples of utterances and response
categories are shown in Table 1.

Utterance Response Category
Hello seq greeting hey there 1
who are you named after seq intro namesakes
I’d like a double cheese-
burger hold the lettuce

offtopic

¿Cómo estás? seq language English only

Table 1. Examples of Twins data.

Our data consists of 13,908 audio files, corresponding to
2,746 unique transcribed utterances, which are classified into
one of the 168 response labels. The distribution of utterances
is highly skewed (see Figure 1), with almost a quarter of user
utterances representing greetings. The dataset was partitioned
into training, development and testing sets, with utterances
collected on a single day always assigned to the same parti-
tion; about 70% of the utterances are in the training set and
the remaining ones are equally split into the development and
testing sets.

2.1. Overview of data preparation

To achieve our goal of developing and testing techniques to
improve natural language understanding in spoken dialogue
systems by joint discriminative reranking of speech n-best
lists and natural language understanding, we start by process-
ing audio utterances in our dataset using three ASR engines
to produce three n-best lists per utterance. We then automati-
cally annotate each hypothesis in each speech n-best list with
the corresponding NLU output. The result is a dataset con-
taining, for each utterance, multiple ASR n-best lists, with
each ASR hypothesis annotated with the 1-best NLU label.
The following sections describe this process in more detail.
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Fig. 1. Distribution of the 10 most common NLU labels in
the Twins data set. Almost a quarter of user utterances are
greetings.

2.2. Data preparation: speech n-best lists

For the experiments reported in this paper, we used three state
of the art and readily available ASR engines: AT&T’s Wat-
son, available through the AT&T Speech Mashup service1,
the Google Speech API2, and SAIL’s3 OtoSense-Kaldi. Wat-
son, the AT&T recognizer, requires that a custom language
model (LM) be built from a text file, while the Google ASR
does not allow for any customization. The Google ASR also
limits the maximum file length to roughly 10 seconds of au-
dio. This did not significantly affect our results, since only a
small fraction of the utterances in our dataset have durations
greater than 10 seconds4.

The recently developed SAIL real-time ASR engine,
OtoSense-Kaldi, is built on top of the open-source toolkit,
Kaldi [13]. Context-dependent tri-phone acoustic models
were trained on 39-dimensional per-frame feature vectors
composed of Mel Frequency Cepstral Coefficients (MFCCs)
with delta and double-delta features. The total number of
tied Gaussians was set to 10000. After training the context-
dependent models, we used Linear Discriminant Analysis
(LDA) and 4 iterations of Maximum Mutual Information
(MMI) training for discriminatively updating the acoustic
model parameters. MMI training updates the parameters by
maximizing the mutual information between the observa-
tion sequence and the correct state sequence. We observed
that discriminative training gives an improvement of approxi-
mately 6% (relative) in WER on the held out test set, resulting
in a final WER on the test set of 21.7%. Note for reference,
that WSJ models for this dataset (with the same LM) result
in an error rate of around 50%, which indicates the large
mismatch in the acoustic conditions and speaking style. We

1https://service.research.att.com/smm
2https://www.google.com/speech-api/v1/recognize
3http://sail.usc.edu
4If for a particular audio file an ASR returned an empty result or an error,

for the purpose of WER calculations we kept the file and assigned to it an
empty ASR n-best list.



dev set WER test set WER
ASR engine 1-best Oracle 1-best Oracle

AT&T 28.8 16.8 32.8 20.8
Google 24.4 17.2 25 18.2
OtoSense-Kaldi 18.7 11.5 21.7 14.2

Table 2. These WERs are obtained by processing the de-
velopment and test sets with the three ASR engines. These
WERs are obtained dividing the total number of edits by the
total number of words in the transcriptions.

believe that additional gains can be made through employ-
ing other acoustic data corpora beyond this dataset, model
selection and on-line adaptation.

The language models employed by OtoSense-Kaldi and
AT&T5 engines were the same. The LM of the Google sys-
tem was beyond our control. However, we did notice that
during subsequent decodings of the dev set the WER went
from 30.6% down to 24.4%. This may be due to internal data
mining and refining by Google, that may indicate some bias
in the results.

On the acoustic modeling front, Otosense-Kaldi was
trained using only this data. For the purposes of this publi-
cation, we did not train any gender or age specific models.
AT&T provides a limited set of acoustic models, and we
used the default gentel06 model, while Google’s acoustic
models are again automatically selected.

We ran the training, development and testing sets through
the ASR systems and recorded for each utterance the returned
n-best lists (with n = 30). To generate the custom language
model for the AT&T and OtoSense-Kaldi ASR we used the
following procedure: for the training set, we divided it into
10 folds and for each fold, we used the manual transcriptions
found in the other 9 folds to generate the text file used to train
the language model; for the development and testing sets we
simply used the manual transcriptions in the training set to
generate the files used to build the language models.

Table 2 shows the WERs obtained in our development
set by the three ASR systems used. All perform well, with
OtoSense-Kaldi achieving the highest performance. How-
ever, for the purpose of this paper, the performance of the
ASR engines used is not crucial as our primary focus in on
NLU accuracy, as impacted by reranking n-best lists from
multiple ASR engines jointly with NLU information.

2.3. Data preparation: utterance classification

We used a maximum entropy multiclass classifier with lexi-
cal features (unigrams and bigrams) [14] as a first-pass natu-

5While we do not have internal knowledge of how the AT&T system
works, we supplied both systems with the same data. We are unaware of
any other resources AT&T may use for training the LM.

ral language understanding module. This classifier was used
to categorize each of the speech hypotheses contained in the
n-best lists. We performed a 10-fold cross-validation: for
each fold, we trained the maximum entropy classifier using
the transcriptions and the manually annotated NLU categories
in the other nine folds. To label the speech n-best lists in our
development and test sets with the NLU classifier, we trained
the NLU using the text and NLU categories in the entire train-
ing set.

After these steps our dataset is composed of a set of audio
files, each annotated with 1) a manual transcription; 2) a man-
ually assigned gold-standard NLU label and 3) three speech
n-best lists with each speech hypothesis annotated with the
1-best result of the automatic NLU classification. Items 1)
and 2) are used for training models and as reference labels
for evaluation. The information in item 3) is produced fully
automatically from the audio files. We attempt to rescore this
information in the the development and test sets, to improve
overall NLU performance.

3. EXPERIMENTS

We evaluate different ways to improve on the simple pipeline
where a single speech hypothesis is produced by the speech
recognizer and used as input to the natural language un-
derstanding module. In our experiments, we use the data
described above, and the main task under consideration is the
classification of individual utterances as one out of the 168
interpretation categories (including the off-topic category)
available in the museum guides system. NLU performance is
evaluated using an accuracy metric, calculated as the number
of correct category assignments divided by the number of
utterances in the test data.

Figure 2 shows NLU accuracy on the development data
under several conditions. The Perfect ASR condition corre-
sponds to what NLU accuracy would be if there were no ASR
errors6. This estimate is obtained using the manual transcrip-
tions in the corpus as the input to the NLU module. The other
five curves show the upper-bound on NLU accuracy for dif-
ferent sizes of n-best lists and different ASR engines and their
combinations, by assuming an oracle that can pick the best
speech hypothesis out of the n-best list (i.e. the hypothesis
that results in highest NLU accuracy, which may not be the
hypothesis with lowest word error rate). The 1+2 curve uses
for each audio file a n-best list formed by merging the two n-
best lists obtained from the AT&T and Google ASR engines.
This merged n-best list is built by interleaving the two origi-
nal n-best lists according to rank. Similarly, the 1+2+3 curve
gives the result obtained by merging the three n-best lists7.

6Perfect ASR is independent of the n-best list size as it uses only the tran-
scriptions, but in this figure is displayed as a line to facilitate comparisons.

7The 1+2+3 curve achieves a oracle NLU performance higher than the
perfect ASR case. This can be explained by considering that this longer and
more diverse combined n-best list can contain more different NLU labels,
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Fig. 2. Maximum NLU performance, using an oracle to
pick the best response category from among the set in n-best
lists for each recognizer and two combination of recognizers.
Baseline 1-best performance is the point at the left end of the
graph. Perfect ASR uses manual transcriptions for training
and testing the NLU. All other curves test the NLU on ASR
output. 1+2 shows the NLU performance combining the n-
best lists from AT&T and Google ASRs. 1+2+3 shows the
NLU performance combining all three ASRs.

This figure shows that using speech n-best lists has the po-
tential for considerable improvements over 1-best ASR out-
put, but that even better results could be obtained if hypothe-
ses generated by different recognizers are combined, if we
had a way to approximate the oracles mentioned above. In the
rest of this section, we describe experiments with two rerank-
ing methods, WER reranking, described in Section 3.1, and
NLU reranking, described in Section 3.2. Tables 3 and 4 show
the performance of the approaches described here on the dev
and test set, compared to their respective 1-best performance.

3.1. Classification of reranked speech results

Figure 2 shows that picking the right speech hypothesis from
an ASR n-best list can result in large improvements in NLU
accuracy. We first address this task using a discriminative
language model trained using the perceptron algorithm with
unigram, bigram and trigram features, following [15, 8]. As
seen in Tables 3 and 4, this WER reranking method achieved
an improved NLU accuracy over 1-best ASR output for al-
most all cases, even though in a few cases the WER actually
became worse. Combining the ATT and Google recognizers
performed significantly better than either the original 1-best
or the reranking for these recognizers, however the best over-
all performer was the original OtoSense-Kaldi.

3.2. Joint rescoring of speech and utterance classification

In this section, we explore the use of feature sets that encode
information obtained from all ASR hypotheses and their NLU

therefore increasing the chance of finding a match with the gold NLU label.

labels, according to the first-pass NLU classifier.
Given an ASR n-best list where each speech hypothesis

has been annotated automatically with an NLU label, we de-
rive a new k-best list, where k is the number of different NLU
labels in the initial ASR n-best list. We then use the same
reranking approach as in the previous section, training with a
0-1 loss function that reflects whether or not the ith entry in the
k-best list corresponds to the gold-standard reference NLU la-
bel. After experimenting with several feature sets using our
training and development data, we arrived at the following
features to rescore an entry i in this k-best list:

NGrams: the unigrams, bigrams and trigrams from all of the
ASR hypotheses in the original speech n-best list anno-
tated with the same NLU label li;

NLU: the NLU label li;

RelPos: the position in the speech n-best list of the topmost
ASR result that was labeled with li by the first-pass
NLU (discretized into 10 ranked bins);

Pos: feature that indicate whether the topmost ASR hypoth-
esis in the speech n-best list annotated with li has the
rank of first, second, third, fourth, fifth or lower in the
speech n-best list;

Count: the frequency with which the label li appeared in the
ASR n-best list (discretized into 10 ranked bins);

OffTopic: a binary feature that reflects whether li is the off-
topic label.

Applying this NLU rescoring approach to the n-best list
obtained from one ASR engine for each utterance in the de-
velopment set results in a higher improvement in NLU ac-
curacy when compared to the WER reranker. The improve-
ment increases when we consider n-best lists formed by merg-
ing results from several ASR engines. This joint reranker is
also able to improve over the 1-best performance achieved by
OtoSense-Kaldi – by a significant margin in the development
set, however the improvement is not significant in the testing
set. All NLU accuracy differences reported in tables 3 and 4
greater than 1% are significant with p < 0.038.

3.3. Contribution of individual features

Here we describe our findings about the contribution to the
NLU accuracy of each feature used by the NLU reranker de-
scribed in Section 3.2.

Table 5 shows the importance of the individual features
used when compared with the baseline system9. NGram fea-
tures are always present. The most valuable feature is the

8Using Dan Bikel’s stratified shuffling significance test script:
http://www.cis.upenn.edu/˜dbikel/software.html#comparator

9We based this analysis, for simplicity, on a subset of the available cases:
the development set annotated with n-best lists from the AT&T and Google
ASRs.



Method NLU accuracy [%]
Perfect ASR 93.3

∆ WER
WER reranking, AT&T 78 (+2.1) -0.6
WER reranking, Google 79.8 (+1) -0.2
WER reranking, OtoSense 85.6 (-0.6) +1.7
WER reranking, 1+2 83.3 (+7.4/+4.5) -7.1/-2.7
WER reranking, 1+2+3 85 (+9.1/+6.2/-1.2) -7.5/-3.1/+2.6

N-best
NLU reranking, AT&T 79.7 (+3.8) 16
NLU reranking, Google 80.1 (+1.3) 5
NLU reranking, OtoSense 86.2 (0) 1
NLU reranking, 1+2 84.4 (+8.5/+5.6) 7
NLU reranking, 1+2+3 88.1 (+12.2/+9.3/+1.9) 6

Table 3. Performance of the reranking techniques on the de-
velopment set. The second column shows the NLU accuracy
achieved and in brackets we report the difference with the
NLU accuracy obtained by using the correspondent 1-best
ASR result (for the combined case we report the difference
with the individual ASRs). The third column shows for the
WER reranking results the change in WER with respect to
the correspondent 1-best WER. For the NLU reranking we re-
port the n-best list size that when re-ranked achieved the best
NLU accuracy (reported in column 2). All NLU accuracy dif-
ferences greater than 1% are significant with p < 0.03.

Method NLU accuracy [%]
Perfect ASR 91.2

∆ WER
WER reranking, AT&T 71.9 (+1.9) -0.2
WER reranking, Google 76.2 (+1.6) +0.4
WER reranking, OtoSense 81 (-1) +2.6
WER reranking, 1+2 78.4 (+8.4/+3.8) -8.6/-0.8
WER reranking, 1+2+3 80 (+10/+5.4/-2) -7.1/+.7/+4.7

N-best
NLU reranking, AT&T 73.3 (+3.3) 16
NLU reranking, Google 76.6 (+2) 5
NLU reranking, OtoSense 82 (0) 1
NLU reranking, 1+2 79.5 (+9.5/+4.9) 7
NLU reranking, 1+2+3 82.6 (+12.6/+8/+0.6) 6

Table 4. Performance of the rescoring techniques described
on the testing set. We run the NLU rescoring using the N-best
list sizes that gave the best performance on the development
set (see table 3). All NLU accuracy differences greater than
1% are significant with p < 0.03.

Count feature. When added to the NGram features it gives
an increment in performance (average across all runs 2.8%)
that is significant in 90% of runs (one run corresponds to the
evaluation of the significance of the performance difference
between the baseline and the reranker for a particular n-best
length). The least valuable feature is the one based on the off
topic label.

Overall the NLU features are less effective when consid-
ered by themselves than the features purely based on the ASR
n-best list. However, the combination of both types of fea-

Average Average
Feature significance [%] ∆ NLU accuracy [%]
Count 90 2.8
Pos 89.6 2.0
RelPos 80.8 3.2
NLU 68.7 2.1
OffTopic 41.2 1.6

Table 5. For each row, significance was measured when
p <= 5% between the performance of the baseline and that
obtained by the reranker using the NGram feature plus the
feature associated to that row.

tures (NLU based and ASR based) achieves higher perfor-
mance than each group individually.

3.4. Error analysis

In this section we go in more detail into the change in NLU
performance obtained by the system that rescores based on
ASR and NLU information. Also here for simplicity we limit
ourselves to the development set annotated by the AT&T
ASR. The rescoring model changed 161 interpretations of
which 68% were correct changes. Most changes from correct
to incorrect NLU analysis involved the off-topic label, with
the rescoring model having more problems recognizing when
an utterance should be considered off-topic.

Using the Google ASR n-best lists, the model changed
144 interpretations of which 78% were correct changes. Also
in this case most errors happened with failing to recognize an
utterance as off-topic.

For the combined 1+2 case, the model changed 222 inter-
pretations of which 84% were correct changes. Here too the
category that introduced most errors was the off-topic one.

Concluding, the rescoring model is effective in improv-
ing the NLU interpretation, but is biased toward avoiding the
off-topic label. This is partly due to the off-topic category
encompassing a very broad class of utterances for which col-
lecting a comprehensive training set is practically impossible
(unless the domain’s topic strongly limits the typical off-topic
utterances, and in that case those limited and highly probable
off-topic utterances should be added to the domain).

4. CONCLUSION

We have shown that a rescoring framework that integrates in-
formation from both ASR and NLU, optimizing the use of
ASR n-best lists directly for NLU accuracy, outperforms one
that focuses on optimizing word error rate as part of a strict
ASR-NLU pipeline. In addition, we have shown that rescor-
ing is effective in utilizing n-best lists obtained from multi-
ple ASR systems. In fact our rescoring approach achieves its



highest improvement in NLU accuracy when reranking the n-
best lists obtained by merging the results of all three recogniz-
ers. This is particularly interesting given that all ASR systems
perform very well on their own, showing that our reranking
approach is a promising framework for ASR ensembles where
results from multiple recognizers are used effectively.

Next we plan to run experiments with more challenging
speech signals to test whether our reranking technique works
well also with higher word error rates. We would also like to
investigate the use of this approach with more sophisticated
NLU models, other ASR engines, and with different types of
spoken dialogue systems.
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