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Abstract

Automatic speech recognition (ASR) systems lack joint optimization during de-
coding over the acoustic, lexical and language models; for instance the ASR will
often prune words due to acoustics using short-term context, prior to rescoring
with long-term context. In this work we model the automated speech transcrip-
tion process as a noisy transformation channel and propose an error correction
system that can learn from the aggregate errors of all the independent modules
constituting the ASR. The proposed system can exploit long-term context us-
ing a neural network language model and can better choose between existing
ASR output possibilities as well as re-introduce previously pruned and unseen
(out-of-vocabulary) phrases. The system provides significant corrections under
poorly performing ASR conditions without degrading any accurate transcrip-
tions. The proposed system can thus be independently optimized and post-
process the output of even a highly optimized ASR. We show that the system
consistently provides improvements over the baseline ASR. We also show that
it performs better when used on out-of-domain and mismatched test data and
under high-error ASR conditions. Finally, an extensive analysis of the type of
errors corrected by our system is presented.
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1. Introduction

Due to the complexity of human language and quality of speech signals, im-
proving performance of automatic speech recognition (ASR) is still a challeng-
ing task. The traditional ASR comprises of three conceptually distinct modules:
acoustic modeling, dictionary and language modeling. Three modules are fairly
independent of each other in research and operation.

In terms of acoustic modeling, Gaussian Mixture Model (GMM) based Hid-
den Markov Model (HMM) systems [1, 2] were a standard for ASR for a long
time and are still used in some of the current ASR systems. Lately, advances
in Deep Neural Network (DNN) led to the advent of Deep Belief Networks
(DBN) and Hybrid DNN-HMM [3, 4], which basically replaced the GMM with
a DNN and employed a HMM for alignments. Deep Recurrent Neural Networks
(RNN), particularly Long Short Term Memory (LSTM) Networks replaced the
traditional DNN and DBN systems [5]. Connectionist Temporal Classification
(CTC) [6] proved to be effective with the ability to compute the alignments
implicitly under the DNN architecture, thereby eliminating the need of GMM-
HMM systems for computing alignments.

The research efforts for developing efficient dictionaries or lexicon have been
mainly in terms of pronunciation modeling. Pronunciation modeling was intro-
duced to handle the intra-speaker variations [7, 8], non-native accent variations
[7, 8], speaking rate variations found in conversational speech [8] and increased
pronunciation variations found in children’s speech [9]. Various linguistic knowl-
edge and data-derived phonological rules were incorporated to augment the lex-
icon.

Research efforts in language modeling share those of the Natural Language
Processing (NLP) community. By estimating the distribution of words, statisti-
cal language modeling (SLM), such as n-gram, decision tree models [10], linguis-
tically motivated models [11] amount to calculating the probability distribution
of different linguistic units, such as words, sentences, and whole documents [12].
Recently, Deep Neural Network based language models [13, 14, 15] have also
shown success in terms of both perplexity and word error rate.

Very recently, state-of-the-art ASR systems are employing end-to-end neural
network models such as sequence-to-sequence [16] in an encoder-decoder archi-
tecture. The system is trained end-to-end from acoustic features as input to
predict the phonemes or characters [17, 18]. The system can be viewed as an
integration of acoustic and lexicon pronunciation models. The state-of-the-art
performance can be attributed towards the joint training (optimization) be-
tween the acoustic model and the lexicon models (end-to-end) enabling them to
overcome the short-comings of the former independently trained models.

Several research efforts were carried out for error correction using post-
processing techniques. Much of the effort involves user input used as a feedback
mechanism to learn the error patterns [19, 20]. Other work employs multi-modal
signals to correct the ASR errors [21, 20]. There has been relatively less work
dealing with ASR error correction. In [22], a word-based error correction tech-
nique was proposed. The technique demonstrated the ability to model the ASR
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as a noisy channel. In [23], similar technique was applied to a syllable-to-syllable
channel model along with maximum entropy based language modeling.
Our Contribution: The scope of this paper is to evaluate whether subsequent
transcription corrections can take place, on top of a highly optimized ASR. We
hypothesize that our system can correct the errors by (i) re-scoring lattices, (ii)
recovering pruned lattices, (iii) recovering unseen phrases, (iv) providing better
recovery during poor recognitions, (v) providing improvements under all acous-
tic conditions, (vi) handling mismatched train-test conditions, (vii) exploiting
longer contextual information and (viii) text regularization. We target to sat-
isfy the above hypotheses by proposing a Noisy-Clean Phrase Context Model
(NCPCM). We introduce context of past errors of an ASR system, that consider
all the automated system noisy transformations. These errors may come from
any of the ASR modules or even from the noise characteristics of the signal.
Using these errors we learn a noisy channel model, and apply it for error correc-
tion of ASR. Compared to the earlier efforts in ASR error correction [22, 23],
our work differs in the following aspects: (1) we propose a phrase-based noisy
channel modeling for error correction; (2) we utilize multiple hypotheses of ASR;
(3) we employ the state-of-the-art neural network based language models which
enables us to exploit long contexts; (4) we use minimum error rate training
(MERT) to optimize and adapt to the domain data; (5) we present the effec-
tiveness of the proposed method on an out-of-domain task; (6) we target specific
types of error corrections to be handled by our system and provide evaluations.

Further, our work is different from discriminative training of language [24]
and acoustic [25] models, which are trained directly to optimize the word error
rate using the reference transcripts. Our method concentrates mostly on cor-
recting the aggregated errors of independent modules of ASR using long term
context.

Additionally, our proposed system comes with several advantages: (1) the
system could potentially be trained without an ASR by creating a phonetic
model of corruption and emulating an ASR decoder on generic text corpora,
(2) the system rapidly adapts to new language, i.e., the unseen words during
training, by creating contextual transformation for rapidly changing language.

The rest of the paper is organized as follows: Section 2 presents various hy-
potheses and discusses the different types of errors we expect to model. Section 3
elaborates on the proposed technique and Section 4 describes the experimental
setup and the databases employed in this work. Results and discussion are pre-
sented in Section 5 and we finally conclude and present future research directions
in Section 6.

2. Hypotheses

In this section we analytically present cases that we hypothesize the proposed
system could help with. In all of these the errors of the ASR may stem from
realistic constraints of the decoding system and pruning structure, while the
proposed system could exploit very long context to improve the ASR output.
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Figure 1: Overview of NCPCM

2.1. Re-scoring Lattices

1. “I was born in nineteen ninety three in Iraq”

2. “I was born in nineteen ninety three in eye rack”

3. “I was born in nineteen ninety three in I rack”

Example 1

In Example 1, all the three samples have the same phonetic transcription -
“ay . w aa z . b ao r n . ih n . n ay n t iy n . n ay n t iy . th r iy . ih n . ay . r ae k”.
Let us assume sample 1 is the correct transcription. Since all the three examples
have the same phonetic transcription, this makes them indistinguishable by the
acoustic model. The language model is likely to down-score the sample 3. It is
likely that sample 2 will score higher than sample 1 by a short context LM (e.g.
bi-gram or 3-gram) i.e., “in” might be followed by “eye” more frequently than
“Iraq” in the training corpora. This will likely result in an ASR error. Thus,
although the oracle WER can be zero, the output WER is likely going to be
higher due to LM choices.

Hypothesis A: An ideal error correction system can select correct
options from the existing lattice.

2.2. Recovering Pruned Lattices
A more severe case of Example 1 would be that the word “Iraq” was pruned

out of the output lattice during decoding. This is often the case when there are
memory and complexity constraints in decoding large acoustic and language
models, where the decoding beam is a restricting parameter. In such cases, the
word never ends up in the output lattice. Since the ASR is constrained to pick
over the only existing possible paths through the decoding lattice, an error is
enforced in the final output.
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Hypothesis B: An ideal error correction system can generate words or
phrases that were erroneously pruned during the decoding process.

2.3. Recovery of Unseen Phrases
On the other hand, an extreme case of Example 1 would be that the word

“Iraq” was never seen in the training data (or is out-of-vocabulary), thereby
not appearing in the ASR lattice. This would mean the ASR is forced to select
among the other hypotheses even with a low confidence (or output an unknown,
< unk >, symbol) resulting in a similar error as before. This is often the case
due to the constant evolution of human language or in the case of a new domain.
For example, names such as “Al Qaeda” or “ISIS” were non-existent in our
vocabularies a few years ago.

Hypothesis C: An ideal error correction system can generate words
or phrases that are out of vocabulary (OOV) and thus not in the ASR
output.

2.4. Better Recovery during Poor Recognitions
An ideal error correction system would provide more improvements for poor

recognitions from an ASR. Such a system could potentially offset for the ASR’s
low performance providing consistent performance over varying audio and recog-
nition conditions. In real-life conditions, the ASR often has to deal with varying
level of “mismatched train-test” conditions, where relatively poor recognition
results are commonplace.

Hypothesis D: An ideal error correction system can provide more
corrections when the ASR performs poorly, thereby offsetting ASR’s
performance drop (e.g. during mismatched train-test conditions).

2.5. Improvements under all Acoustic Conditions
An error correction system which performs well during tough recognition

conditions as per Hypothesis 2.4 is no good if it degrades the good recogni-
tions. Thus, in addition to our Hypothesis 2.4, an ideal system would cause
no degradations on good recognitions simultaneously providing more improve-
ments, handling poor recognitions from an ASR. Such a system can be hy-
pothesized to always improve upon and provide benefits over any ASR system
including state-of-the-art recognition systems. An ideal system would provide
improvements over the entire spectrum of ASR performance (WER).

Hypothesis E: An ideal error correction system can not only provide
improvements during poor recognitions, but also does not degrade out-
put when the ASR performs well.
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2.6. Adaptation
We hypothesize that the proposed system would help in adaptation over

mismatched conditions. The mismatch could manifest in terms of acoustic con-
ditions and lexical constructs. The acoustic adaptation can be seen as a con-
sequence of Hypothesis 2.4 & 2.5. In addition, the proposed model is capable
of capturing patterns of language use manifesting in specific speaker(s) and do-
main(s). Such a system could eliminate the need of retraining the ASR model
for mismatched environments.

Hypothesis F: An ideal error correction system can aid in mismatched
train-test conditions.

2.7. Exploit Longer Context

• “Eyes melted, when he placed his hand on her shoulders.”

• “Ice melted, when he placed it on the table.”

Example 2

The complex construct of human language and understanding enables re-
covery of lost or corrupted information over different temporal resolutions. For
instance, in the above Example 2, both the phrases, “Eyes melted, when he
placed” and “Ice melted, when he placed” are valid when viewed within its
shorter context and have identical phonetic transcriptions. The succeeding
phrases, underlined, help in discerning whether the first word is “Eyes” or “Ice”.
We hypothesize that an error correction model capable of utilizing such longer
contexts is beneficial. As new models for phrase based mapping, such as se-
quence to sequence models [16], become applicable this becomes even more
possible and desirable.

Hypothesis G: An ideal error correction system can exploit longer
context than the ASR for better corrections.

2.8. Regularization

1. • “I guess ’cause I went on a I went on a ...”
• “I guess because I went on a I went on a ...”

2. • “i was born in nineteen ninety two”
• “i was born in 1992”

3. • “i was born on nineteen twelve”
• “i was born on 19/12”

Example 3
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As per the 3 cases shown in Example 3, although both the hypotheses for
each of them are correct, there are some irregularities present in the language
syntax. Normalization of such surface form representation can increase read-
ability and usability of output. Unlike traditional ASR, where there is a need to
explicitly program such regularizations, our system is expected to learn, given
appropriate training data, and incorporate regularization into the model.

Hypothesis H: An ideal error correction system can be deployed as an
automated text regularizer.

3. Methodology

The overview of the proposed model is shown in Figure 1. In our paper,
the ASR is viewed as a noisy channel (with transfer function H), and we learn
a model of this channel, Ĥ−1 (estimate of inverse transfer function H−1) by
using the corrupted ASR outputs (equivalent to signal corrupted by H) and
their reference transcripts. Later on, we use this model to correct the errors of
the ASR.

The noisy channel modeling mainly can be divided into word-based and
phrase-based channel modeling. We will first introduce previous related work,
and then our proposed Noisy-Clean Phrase Context Model (NCPCM).

3.1. Previous related work
3.1.1. Word-based Noisy Channel Modeling

In [22], the authors adopt word-based noisy channel model borrowing ideas
from a word-based statistical machine translation developed by IBM [26]. It is
used as a post-processor module to correct the mistakes made by the ASR. The
word-based noisy channel modeling can be presented as:

Ŵ = arg max
Wclean

P (Wclean|Wnoisy)

= arg max
Wclean

P (Wnoisy|Wclean)PLM(Wclean)

where Ŵ is the corrected output word sequence, P (Wclean|Wnoisy) is the poste-
rior probability, P (Wnoisy|Wclean) is the channel model and PLM(Wclean) is the
language model. In [22], authors hypothesized that introducing many-to-one
and one-to-many word-based channel modeling (referred to as fertility model)
could be more effective, but was not implemented in their work.

3.1.2. Phrase-based Noisy Channel Modeling
Phrase-based systems were introduced in application to phrase-based statis-

tical translation system [27] and were shown to be superior to the word-based
systems. Phrase based transformations are similar to word-based models with
the exception that the fundamental unit of observation and transformation is a
phrase (one or more words). It can be viewed as a super-set of the word-based
[26] and the fertility [22] modeling systems.
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3.2. Noisy-Clean Phrase Context Modeling
We extend the ideas by proposing a complete phrase-based channel modeling

for error correction which incorporates the many-to-one and one-to-many as well
as many-to-many words (phrase) channel modeling for error-correction. This
also allows the model to better capture errors of varying resolutions made by
the ASR. As an extension, it uses a distortion modeling to capture any re-
ordering of phrases during error-correction. Even though we do not expect big
benefits from the distortion model (i.e., the order of the ASR output is usually
in accordance with the transcript), we include it in our study for examination. It
also uses a word penalty to control the length of the output. The phrase-based
noisy channel modeling can be represented as:

p̂ = argmax
pclean

P (pclean|pnoisy)

= argmax
pclean

P (pnoisy|pclean)PLM(pclean)wlength(pclean)

where p̂ is the corrected sentence, pclean and pnoisy are the reference and noisy
sentence respectively. wlength(pclean) is the output word sequence length penalty,
used to control the output sentence length, and P (pnoisy|pclean) is decomposed
into:

P (pInoisy|pIclean) =
I∏

i=1

ϕ(pinoisy|piclean)D(starti − endi−1)

where ϕ(pinoisy|piclean) is the phrase channel model or phrase translation table,
pInoisy and pIclean are the sequences of I phrases in noisy and reference sentences
respectively and i refers to the ith phrase in the sequence. D(starti − endi−1)
is the distortion model. starti is the start position of the noisy phrase that was
corrected to the ith clean phrase, and endi−1 is the end position of the noisy
phrase corrected to be the i− 1th clean phrase.

3.3. Our Other Enhancements
In order to effectively demonstrate our idea, we employ (i) neural language

models, to introduce long term context and justify that the longer contextual
information is beneficial for error corrections; (ii) minimum error rate training
(MERT) to tune and optimize the model parameters using development data.

3.3.1. Neural Language Models
Neural network based language models have been shown to be able to model

higher order n-grams more efficiently [13, 14, 15]. In [23], a more efficient
language modeling using maximum entropy was shown to help in noisy-channel
modeling of a syllable-based ASR error correction system.

Incorporating such language models would aid the error-correction by ex-
ploiting the longer context information. Hence, we adopt two types of neural
network language models in this work. (i) Feed-forward neural network which is
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trained using a sequence of one-hot word representation along with the specified
context [28]. (ii) Neural network joint model (NNJM) language model [29]. This
is trained in a similar way as in (i), but the context is augmented with noisy
ASR observations with a specified context window. Both the models employed
are feed-forward neural networks since they can be incorporated directly into
the noisy channel modeling. Noise Contrastive Estimation was used to handle
the large vocabulary size output.

3.3.2. Minimum Error Rate Training (MERT)
One of the downsides of the noisy channel modeling is that the model is

trained to maximize the likelihood of the seen data and there is no direct op-
timization to the end criteria of WER. MERT optimizes the model parameters
(in our case weights for language, phrase, length and distortion models) with
respect to the desired end evaluation criterion. MERT was first introduced in
application to statistical machine translation providing significantly better re-
sults [30]. We apply MERT to tune the model on a small set of development
data.

4. Experimental Setup

4.1. Database
For training, development, and evaluation, we employ Fisher English Train-

ing Part 1, Speech (LDC2004S13) and Fisher English Training Part 2, Speech
(LDC2005S13) corpora [31]. The Fisher English Training Part 1, is a collec-
tion of conversation telephone speech with 5850 speech samples of up to 10
minutes, approximately 900 hours of speech data. The Fisher English Training
Part 2, contains an addition of 5849 speech samples, approximately 900 hours
of telephone conversational speech. The corpora is split into training, develop-
ment and test sets for experimental purposes as shown in Table 1. The splits
of the data-sets are consistent over both the ASR and the subsequent noisy-
clean phrase context model. The development dataset was used for tuning the
phrase-based system using MERT.

We also test the system under mismatched training-usage conditions on
TED-LIUM. TED-LIUM is a dedicated ASR corpus consisting of 207 hours of
TED talks [32]. The data-set was chosen as it is significantly different to Fisher
Corpus. Mismatch conditions include: (i) variations in channel characteristics,
Fisher, being a telephone conversations corpus, is sampled at 8kHz where-as the
TED-LIUM is originally 16kHz, (ii) noise conditions, the Fisher recordings are

Train Development Test
Fisher English 1,833,088 4906 4914

TED-LIUM - 507 1155

Table 1: Database split (Number of Utterances)
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Method Dev Test
WER BLEU WER BLEU

Baseline-1 (ASR output) 15.46% 75.71 17.41% 72.99
Baseline-2 (Word based + bigram LM) 16.23% 74.28 18.10% 71.76
Word based + bigram LM + MERT(B) 15.46% 75.70 17.40% 72.99

Word based + bigram + MERT(W) 15.39% 75.65 17.40% 72.77
Word based + trigram LM + MERT(B) 15.48% 75.59 17.47% 72.81
Word based + trigram LM + MERT(W) 15.46% 75.46 17.52% 72.46

Proposed NCPCM 20.33% 66.70 22.32% 63.81
NCPCM + MERT(B) 15.11% 76.06 17.18% 73.00
NCPCM + MERT(W) 15.10% 76.08 17.15% 73.05

NCPCM + MERT(B) w/o re-ordering 15.27% 76.02 17.11% 73.33
NCPCM + MERT(W) w/o re-ordering 15.19% 75.90 17.18% 73.04

NCPCM + 10best + MERT(B) 15.19% 76.12 17.17% 73.22
NCPCM + 10best + MERT(W) 15.16% 75.91 17.21% 73.03

Table 2: Noisy-Clean Phrase Context Model (NCPCM) results (uses exactly same LM as
ASR)

significantly noisier, (iii) utterance lengths, TED-LIUM has longer conversa-
tions since they are extracts from TED talks, (iv) lexicon sizes, vocabulary size
of TED-LIUM is much larger with 150,000 words where-as Fisher has 42,150
unique words, (v) speaking intonation, Fisher being telephone conversations is
spontaneous speech, whereas the TED talks are more organized and well articu-
lated. Factors (i) and (ii) mostly affect the performance of ASR due to acoustic
differences while (iii) and (iv) affect the language aspects, (v) affects both the
acoustic and linguistic aspects of the ASR.

4.2. System Setup
4.2.1. Automatic Speech Recognition System

We used the Kaldi Speech Recognition Toolkit [33] to train the ASR system.
In this paper, the acoustic model was trained as a DNN-HMM hybrid system. A
tri-gram language model was trained on the transcripts of the training dataset.
The CMU pronunciation dictionary [34] was adopted as the lexicon. The result-
ing ASR is state-of-the-art both in architecture and performance and as such
additional gains on top of this ASR are challenging.

4.2.2. Pre-processing
The reference outputs of ASR corpus contain non-verbal signs, such as

[laughter], [noise] etc. These event signs might corrupt the phrase context model
since there is little contextual information between them. Thus, in this paper,
we cleaned our data by removing all these non-verbal signs from dataset. Also,
to prevent data sparsity issues, we restricted all of the sample sequences to a
maximum length of 100 tokens (given that the database consisted of only 3
sentences having more than the limit).
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Method Dev Test
WER BLEU WER BLEU

Baseline-1 (ASR output) 15.46% 75.71 17.41% 72.99
NCPCM + 3gram NNLM + MERT(B) 15.46% 75.91 17.37% 73.24
NCPCM + 3gram NNLM + MERT(W) 15.28% 75.94 17.11% 73.31
NCPCM + 5gram NNLM + MERT(B) 15.35% 75.99 17.20% 73.34
NCPCM + 5gram NNLM + MERT(W) 15.20% 75.96 17.08% 73.25

NCPCM + NNJM-LM (5,4) + MERT(B) 15.29% 75.93 17.13% 73.26
NCPCM + NNJM-LM (5,4) + MERT(W) 15.28% 75.94 17.13% 73.29

Table 3: Results for Noisy-Clean Phrase Context Models (NCPCM) with Neural Network
Language Models (NNLM) and Neural Network Joint Models (NNJM)

4.3. Baseline System
We adopt two different baseline systems because of their relevance to this

work:
Baseline-1: The raw performance of the ASR system, because of its relevance
to the application of the proposed model.
Baseline-2: The word-based noisy channel model, to connect to a prior work
as described in Section 3.1.1 based on [22] and for comparison purposes.

4.4. Evaluation Criteria
The final goal of our work is to show improvements in terms of the per-

formance of ASR. Thus, we provide word error rate as it is a standard in the
ASR community. Moreover, Bilingual Evaluation Understudy (BLEU) score
[35] is used for evaluating our work, since our model can be also treated as a
transfer-function (“translation”) system from ASR output to NCPCM output.

5. Results and Discussion

In this section we evaluate the validity of our hypotheses from Section 2 along
with the experimental results. The experimental results are presented in three

Method Dev Test
WER BLEU WER BLEU

Baseline-1 26.92% 62.00 23.04% 65.71
Baseline-2 29.86% 57.55 25.51% 61.79

NCPCM + MERT(B) 26.06% 63.30 22.51% 66.67
NCPCM + MERT(W) 26.15% 63.10 22.74% 66.36

NCPCM + generic LM + MERT(B) 25.57% 63.98 22.38% 66.97
NCPCM + generic LM + MERT(W) 25.56% 63.83 22.33% 66.96

Table 4: Results for out-of-domain adaptation using Noisy-Clean Phrase Context Models
(NCPCM)
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different tasks: (i) overall WER experiments, highlighting the improvements of
the proposed system, presented in Tables 2, 3 & 4, (ii) detailed analysis of
WERs over subsets of data, presented in Figures 2 & 3, and (iii) analysis of
the error corrections, presented in Table 5. The assessment and discussions of
each task is structured similar to Section 2 to support their respective claims.

5.1. Re-scoring Lattices
Table 5 shows selected samples through the process of the proposed error

correction system. In addition to the reference, ASR output and the proposed
system output, we provide the ORACLE transcripts to assess the presence of the
correct phrase in the lattice. Cases 4-6 from Table 5 have the correct phrase in
the lattice, but gets down-scored in the ASR final output which is then recovered
by our system as hypothesized in Hypothesis 2.1.

5.2. Recovering Pruned Lattices
In the cases 1 and 2 from Table 5, we see the correct phrase is not present

in the ASR lattice, although they were seen in the training and are present in
the vocabulary. However, the proposed system manages to recover the phrase
as discussed in Hypothesis 2.3. Moreover, Case 2 also demonstrates an instance
where the confusion occurs due to same phonetic transcriptions (“ridiculously”
versus “ridiculous lee”) again supporting Hypothesis 2.1.

5.3. Recovery of Unseen Phrases
Case 3 of Table 5, demonstrates an instance where the word “qaeda” is

absent from the ASR lexicon (vocabulary) and hence absent in the decoding
lattice. This forces the ASR to output an unknown-word token (< unk >). We
see that the system recovers an out-of-vocabulary word “qaeda” successfully as
claimed in Hypothesis 2.3.

5.4. Better Recovery during Poor Recognitions
To justify the claim that our system can offset for the performance deficit

of the ASR at tougher conditions (as per Hypothesis 2.4, we formulate a sub-
problem as follows:
Problem Formulation: We divide equally, per sentence length, our develop-
ment and test datasets into top-good (good recognition results) and bottom-bad
(poor recognition results) subsets based on the WER of the ASR and analyze
the improvements and any degradation caused by our system.

Figure 3 shows the plots of the above mentioned analysis for different systems
as captioned. The blue lines are representative of the improvements provided by
our system for top-good subset over different utterance lengths, i.e., it indicates
the difference between our system and the original WER of the ASR (negative
values indicate improvement and positive values indicate degradation resulting
from our system). The green lines indicate the same for bottom-bad subset of
the database. The red indicates the difference between the bottom-bad WERs
and the top-good WERs, i.e., negative values of red indicate that the system

12



1.
REF: oysters clams and mushrooms i think
ASR: wasters clams and mushrooms they think
ORACLE: wasters clams and mushrooms i think
NCPCM: oysters clams and mushrooms they think

2. REF: yeah we had this awful month this winter where it was like a good day
if it got up to thirty it was ridiculously cold

ASR: yeah we had this awful month uh this winter where it was like a good
day if i got up to thirty was ridiculous lee cold

ORACLE: yeah we had this awful month this winter where it was like a good day
if it got up to thirty it was ridiculous the cold

NCPCM: yeah we had this awful month uh this winter where it was like a good
day if i got up to thirty it was ridiculously cold

3.
REF: oh well it depends on whether you agree that al qaeda came right out

of afghanistan
ASR: oh well it depends on whether you agree that al <unk> to came right

out of afghanistan
ORACLE: oh well it depends on whether you agree that al <unk> to came right

out of afghanistan
NCPCM: oh well it depends on whether you agree that al qaeda to came right

out of afghanistan

4.
REF: they laugh because everybody else is laughing and not because it’s

really funny
ASR: they laughed because everybody else is laughing and not because it’s

really funny
ORACLE: they laugh because everybody else is laughing and not because it’s

really funny
NCPCM: they laugh because everybody else is laughing and not because it’s

really funny

5.
REF: yeah especially like if you go out for ice cream or something
ASR: yeah it specially like if you go out for ice cream or something
ORACLE: yeah it’s especially like if you go out for ice cream or something
NCPCM: yeah especially like if you go out for ice cream or something

6.
REF: we don’t have a lot of that around we kind of live in a nicer area
ASR: we don’t have a lot of that around we kinda live in a nicer area
ORACLE: we don’t have a lot of that around we kind of live in a nicer area
NCPCM: we don’t have a lot of that around we kind of live in a nicer area

Table 5: Analysis of selected sentences
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Figure 2: Top-Good, Bottom-Bad WER Splits. As we can see the WER for top-good is often
0%, which leaves no margin for improvement. We will see the impact of this later, as in Fig. 3

provides more improvements to the bottom-bad subset relative to the top-good
subset. The dotted lines represent their respective trends which is obtained by
a simple linear regression (line-fitting).

For poor recognitions, we are concerned about the bottom-bad subset, i.e.,
the green lines in Figure 3. Firstly, we see that the dotted green line is always
below zero, which indicates there is always improvements for bottom-bad i.e.,
poor recognition results. Second, we observe that the dotted red line usually
stays below zero, indicating that the performance gains made by the system
add more for the bottom-bad poor recognition results compared to the top-
good subset (good recognitions). Further, more justifications are provided later
in the context of out-of-domain task (Section 5 5.6) where high mismatch results
in tougher recognition task are discussed.

5.5. Improvements under all Acoustic Conditions
To justify the claim that our system can always provide benefits over any

ASR system (Hypothesis 2.5), we need to show that the proposed system: (i)
does not degrade the performance of the good recognition, (ii) provides improve-
ments to poor recognition instances, of the ASR. The latter has been discussed
and confirmed in the previous Section 5 5.4. For the former, we provide evalu-
ations from two point of views: (1) assessment of WER trends of top-good and
bottom-bad subsets (as in the previous Section 5 5.4), and (2) overall absolute
WER of the proposed systems.

Firstly, examining Figure 3, we are mainly concerned about the top-good
subset pertaining to degradation/improvement of good recognition instances.
We observe that the dotted blue line is close to zero in all the cases, which
implies that the degradation of good recognition is extremely minimal. More-
over, we observe that the slope of the line is almost zero in all the cases, which
indicates that the degradation is minimal and consistent over all the utterance
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lengths. Moreover, assessing the degradation from the absolute WER perspec-
tive, Figure 2a shows the WER over utterance lengths for the top-good and
bottom-bad subsets for the in-domain case. The top-good WER is small, at
times even 0% (perfect recognition) thereby allowing very small margin for im-
provement. In such a case, we see minimal degradation. Although we lose a bit
on very good recognitions which is extremely minimal, we gain significantly in
the case of ‘bad’ recognitions. Thus to summarize, the damage that this system
can make, under the best ASR conditions, is minimal and offset by the potential
significant gains present when the ASR hits some tough recognition conditions.

Secondly, examining the overall WER, Table 2 gives the results of the pro-
posed technique. Note that we use the same language model as the ASR. This
helps us evaluate a system that does not include additional information. We
provide the performance measures on both the development and held out test
data. The development data is used for MERT tuning. The performance is
evaluated both in terms of WER and BLEU scores. The output of the ASR
(i.e., Baseline-1) suggests that the development data is less complex compared
to the held out test set. We note that none of the baseline, word-based systems
provide any improvements, even when we increase context and use MERT op-
timization. We also tried different optimization criteria with MERT, i.e., using
BLEU(B) and WER(W).

The proposed phrase-based system significantly outperforms the baseline
when employing MERT (statistically significant with p < 0.001 for both word
error and sentence error [36]). For all our subsequent experiments, MERT al-
ways helps and hence we only include results with MERT. We find that MERT
optimized for WER consistently outperforms that with optimization criteria of
BLEU score. We also perform trials by disabling the distortion modeling and
see that results remain relatively unchanged. This is as expected since the ASR
preserves the sequence of words with respect to the transcripts and there is
no reordering effect over the errors. The phrase based context modeling pro-
vides a relative improvement of 1.72% over the baseline and the ASR output.
Using multiple hypotheses (10-best) from the ASR, we hope to capture more
relevant error patterns of the ASR model, thereby enriching the noisy channel
modeling capabilities. However, we find that the 10-best gives about the same
performance as the 1-best. In this case we considered 10 best as 10 separate
training pairs for training the system. In the future we want to exploit the inter-
dependency of this ambiguity (the fact that all the 10-best hypotheses represent
a single utterance) for training and error correction at test time.

5.6. Adaptation
To assess the adaptation capabilities, we evaluate the performance of the pro-

posed noisy-clean phrase context model on an out-of-domain task, TED-LIUM
data-base, shown in Table 4. The baseline-1 (ASR performance) confirms of the
heightened mismatched conditions between the training Fisher Corpus and the
TED-LIUM data-base. However, we see that the phrase context modeling pro-
vides modest improvements over the baseline of approximately 2.3% relative on
the held-out test set. We note that the improvements are consistent compared
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(b) Test: NCPCM + MERT(W)
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(c) Dev: NCPCM + 5gram NNLM +
MERT(W)
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(d) Test: NCPCM + 5gram NNLM +
MERT(W)
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(e) Out-of-Domain Dev: NCPCM +
generic LM + MERT(W)
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(f) Out-of-Domain Test: NCPCM +
generic LM + MERT(W)

Figure 3: Length of hypotheses through our NCPCM models versus absolute WER change.
Blue & Green lines represent difference between WER of our system and the baseline ASR,
for top-good and bottom-bad hypotheses, respectively. In an ideal scenario, all these lines

would be below 0, thus all providing a change in WER towards improving the system.
However we see in some cases that the WER increases, especially when the hypotheses
length is short and when the performance is good. This is as expected since from Fig. 2

some cases are at 0% WER due to the already highly-optimized nature of our ASR.
The red line represents the aggregate error over all data for each word length and as we can

see in all cases the trend is one of improving the WER.
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to the earlier in-domain experiments in Table 2. Moreover, since the previous
LM was trained on Fisher Corpus, we adopt a more generic English LM which
provides further improvements of up to 3.1%. This confirms the robustness of
the proposed approach and its application to the out-of-domain data. More
importantly, the result confirms Hypothesis 2.6, i.e., our claim of rapid adapt-
ability of the system to varying mismatched acoustic and linguistic conditions
and also supports the possibility of training our system without the need of an
ASR.

Further, comparing the WER trends from the in-domain task (Figure 3b)
to the out-of-domain task (Figure 3f), we firstly find that the improvements in
the out-of-domain task are obtained for both top-good (good recognition) and
bottom-bad (bad recognition), i.e., both the dotted blue line and the dotted
green line are always below zero. Secondly, we observe that the improvements
are more consistent throughout all the utterance lengths, i.e., all the lines have
near zero slopes compared to the in-domain task results. The two findings are
fairly meaningful considering the high mismatch of the out-of-domain data.

5.7. Exploit Longer Context
Firstly, inspecting the error correction results from Table 5, cases 2 and 4

hint at the ability of the system to select appropriate word-suffixes using long
term context information.

Second, from detailed WER analysis in Figure 3, we see that the bottom-
bad (dotted green line) improvements decrease with increase in length in most
cases, hinting at potential improvements to be found by using higher contextual
information for error correction system as future research directions. Moreover,
closer inspection across different models, comparing the trigram ARPA model
(Figure 3b) with the 5gram NNLM (Figure 3d), we find that the NNLM provides
minimal degradation and better improvements especially for longer utterances
by exploiting more context (the blue dotted line for NNLM has smaller intercept
value as well as higher negative slope). We also find that for the bottom-
bad poor recognition results (green dotted-line), the NNLM gives consistent
(smaller positive slope) and better improvements especially for the higher length
utterances (smaller intercept value). Thus emphasizing the gains provided by
higher context NNLM.

Third, Table 3 shows the results obtained using a neural network language
model of higher orders (also trained only on the in-domain data). Comparing
results from Table 2 with Table 3, we note the benefits of higher order LMs, with
the 5-gram neural network language model giving the best results (a relative
improvement of 1.9% over the baseline), outperforming the earlier ARPA models
as per Hypothesis 2.7. However, the neural network joint model LM with target
context of 5 and source context of 4 did not show significant improvements over
the traditional neural LMs. We expect the neural network models to provide
further improvements with more training data.
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5.8. Regularization
Finally, the last case in Table 5 is of text regularization as described in

Section 2, Hypothesis 2.8. Overall, in our experiments, we found that approx-
imately 20% were a case of text regularization and the rest were a case of the
former hypotheses.

6. Conclusions and Future Work

In this work, we proposed a noisy channel model for error correction based on
phrases. The system post-processes the output of an automated speech recog-
nition system and as such any contributions in improving ASR are orthogonal.
Firstly, we hypothesized what type of errors we target to correct. Later on,
we supported our claims with apt problem formulation and their respective re-
sults. We showed that our system can improve the performance of the ASR
by (i) re-scoring the lattices (Hypothesis 2.1), (ii recovering words pruned from
the lattices (Hypothesis 2.2), (iii) recovering words never seen in the vocabulary
and training data (Hypothesis 2.3), (iv) exploiting longer context information
(Hypothesis 2.7), and (v) by regularization of language syntax (Hypothesis 2.8).
Moreover, we also claimed and justified that our system can provide more im-
provement in low-performing ASR cases (Hypothesis 2.4), while keeping the
degradation to minimum in cases when the ASR performs well (Hypothesis 2.5).
In doing so, our system could effectively adapt (Hypothesis 2.6) to changing
recognition environments and provide improvements over any ASR systems.

In our future work, the output of the noisy-clean phrase context model could
be fused with the ASR belief to obtain a new hypothesis. We also intend to
introduce ASR confidence scores and signal SNR estimates, to improve the
channel model. We are investigating introducing the probabilistic ambiguity of
the ASR in the form of lattice or confusion networks as inputs to the channel-
inversion model.

Further, we will utilize sequence-to-sequence (Seq2seq) translation modeling
[16] to map ASR outputs to reference transcripts. The Seq2seq model has
been shown to have benefits especially in cases where training sequences are of
variable length [37]. We intend to employ Seq2seq model to encode ASR output
to a fixed-size embedding and decode this embedding to generate the corrected
transcripts.
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