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Abstract
Speech-to-speech (S2S) translation has been of increased

interest in the last few years with the research focused mainly on
lexical aspects. It has however been widely acknowledged that
incorporating other rich information such as expressive prosody
contained in speech can enhance the cross-lingual communica-
tion experience. Motivated by recent empirical findings show-
ing a positive relation between the transfer of emphasis and the
quality of the audio translation, we propose a computational
method to derive a set of acoustic cues that can be used in trans-
ferring emphasis for the English-Spanish language pair. In par-
ticular, we present an iterative algorithm that aims to discover
the set of acoustic cue pairs in the two languages that maxi-
mize the accurate transfer of emphasis. We find that the relevant
acoustic cues can be constructed from a diverse set of features
including word/phrase level statistics of spectral, intensity and
prosodic cues and can model the acoustic information related to
emphasized and neutral words/phrases for the English-Spanish
language pair. These features can in turn enable data-driven
transformations from source to target language that preserve
such rich prosodic information. We demonstrate the efficacy of
this approach through experiments on a specially constructed
corpus of 1800 English-Spanish words/phrases.

Index Terms: Speech-to-speech translation, paralinguistic cues
representation

1. Introduction
Speech-to-speech (S2S) translation’s ultimate goal is to allow
spoken human communication across different languages, di-
alects and cultures. S2S is becoming more desirable due to
increasingly multicultural societies, people’s increased travel,
and due to widely available Internet-connected devices such as
smart-phones. The need is also evident in improving health-
care delivery among patients and doctors that do not speak the
same language [1]. This need has attracted research and indus-
try towards the creation of a robust and accurate S2S translation
system.

A variety of S2S systems have been proposed in the litera-
ture [2, 3, 4]. A typical speech-to-speech (S2S) system is com-
posed of an automatic speech recognizer (ASR) which converts
the input into words, the words are translated using a statistical
machine translator (SMT) and, finally, a Text-To-Speech (TTS)
system is used to compose the target signal. In such pipelined
S2S approach, one can isolate and work on subsystems inde-
pendently. However, S2S translation is beyond this pipelined
S2S approach. Recent work [5] has shown that additional par-
alinguistic cues such as emphasis can be also useful for S2S
translation.

There is limited systems-side work in bringing paralinguis-
tic aspects into S2S translation. However, there is early research
into exploiting paralinguistic cues in the S2S framework. Par-
likar et al. [6] have used phoneme mappings as acoustic units
to adapt the TTS output signal from the input language and
shown benefits on the TTS side. On the feature side, power
and duration have been used in [7] to translate emphasized
digits and wherein the prediction of emphasis and root mean
squared error rate (RMSE) have been used as an evaluation met-
ric. Aguero et al. [8] have used an unsupervised approach in
learning prosodic mappings and showed TTS output benefits in
terms of mean opinion score. Rangarajan et al. [9] used dialog
acts and prosodic cues obtained from the input speech signal
within the SMT component and have shown translation benefits
in terms of BLEU score [10].

While such approaches can offer useful information to var-
ious aspects of S2S components, a computational approach to
learn paralinguistic representations can be very important for
all components and S2S translation in the same way phonemes
and words are useful for ASR. In contrast to existing work that
focuses on the entire S2S system to show improvement in terms
of different aspects of S2S translation, in this paper, we focus
on deriving acoustic representations that maximize the direct in-
formation transfer across languages. We present a data-driven
supervised approach that learns acoustic mappings by discretiz-
ing the acoustic space (modeled by diverse speech features such
as MFCCs, pitch etc.) with the K-Means algorithm. The code
mappings are evaluated using the mutual information between
the bilingual discrete representations and the presence of par-
alinguisticly salient. In addition, the bilingual acoustic repre-
sentations are evaluated by conditional entropy to measure the
uncertainty of the mappings.

Specifically, in this paper, we show the efficacy of the ap-
proach by creating a representation for prosodic information
transfered and focus on deriving the most informative acous-
tic representations. The representation is created from acoustic
feature vectors discretized and evaluated using mutual informa-
tion shared between the representation and the emphasis trans-
fer. The representation is learned from a quadruplets of parallel
utterances spoken in neutral (flat tone) English, neutral Spanish,
and English, Spanish with appropriate emphasis. In addition,
we further attempt to jointly maximize the information trans-
fered and the predictability of the encoding using conditional
entropy as a measure.

This paper is structured as follows. In section 2, we explain
how the 4-way bilingual data have been collected. In section
3, we describe the acoustic measures used to create the acous-
tic representation. In section 4, we give a brief description of
the word/phrase level features used to model the acoustic space.
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Section 5 describes the approach used to map the acoustic space
to the acoustic representation. In section 6, we describe the ex-
perimental setup and section 7 discusses the results of this work.
Finally, in section 8, we summarize the findings of this work and
provide some future directions.

2. Data-Driven Learning
To collect data suitable for directly learning emphasis transfer
representations for the English-Spanish bilingual pair, we re-
cruited two bilingual actors, one male and one female. We ob-
tained a random utterance set from the IEMOCAP [11] database
and translated all English utterances to Spanish.

The utterances were tagged with words to be emphasized.
The corresponding word/phrase on the translated Spanish side
has been marked as well. The actors spoke the utterance in both
languages with emphasis and neutral resulting into a quadruplet.
We recorded 450 such quadruplets resulting in 1800 utterances.
Next, we extracted the words/phrases that are emphasized with
their neutral counterparts in both languages resulting into 1800
words/phrases. The set has been split into half for training and
half testing.

3. Acoustic Representation
In this section, we propose a representation for the acoustic
cues transfered in cross-lingual spoken translation. To create
this representation, we propose a mapping from the continuous
acoustic space of speech to a discrete set of acoustic units.

Hence, say we have two words/phrases spoken in two lan-
guages L1 and L2. Let XL1 and XL2 be signal representations
of the words/phrases, we define two mappings independently
for the two languages to yield the corresponding discretized
(quantized) vectors as follows:

XL1 → AL1

and

XL2 → AL2

The signal representation XLi is composed of a set of fea-
tures, for example, transformations of MFCC, pitch and other
spectral and prosodic features. The mapping defines a dis-
cretization of such features which denoted as ALi . To con-
struct such a mapping, we use K-means clustering [12] to map
the continuous space of acoustic cues to a finite discrete set of
acoustic units.

3.1. Transfer of acoustic cues

With the aforementioned representation, we need a way to mea-
sure how well cues are transfered by the particular represen-
tation. Each feature vector and mapping to acoustic units can
create a representation in which some mappings can model the
“language” of acoustic cues transfered. Thus, we propose to use
an information theoretic approach to evaluate each representa-
tion created by different feature vectors and different mappings
to acoustic units. Hence, given a perceptual acoustic transfer
Y , for example emphasis transfer, we need to find a represen-
tation A = (AL1 , AL2) such that their mutual information is
maximized:

I(A, Y ) =
∑

a∈A,y∈Y
P (a, y)log

P (a, y)

P (a)P (y)

where P defines the probability measure.

3.2. Conditional entropy for minimizing code uncertainty

While a specific representation can model the information
shared between a language pair for analysis purposes of the
acoustic cues transfered, it might have high uncertainty in the
translation process. Thus, it is useful to have a measure to model
the coding mapping uncertainty. For this reason, we propose to
use a soft metric to evaluate how well the acoustic translation
representation can be predicted using conditional entropy which
can be written as:

H(AL1 |AL2) =
∑

aL1
∈AL1

,aL2
∈AL2

P (aL1 , aL2)log
P (aL2)

P (aL1 , aL2)

Using the conditional entropy metric, we can evaluate the
ambiguity of the coding scheme.

4. Acoustic features
We considered a variety of acoustic feature vectors (XL1 ,XL2 )
to represent different aspects of the speech spectrum and
prosodic cues. All features are defined at the word/phrase level.

4.1. Mean power

The first feature we used in our representation is mean power
to model the transfer of emphasis. Since power has been used
widely in a variety of settings for modeling emphasis, we use it
to produce a baseline representation.

4.2. Additional features

In addition to mean power, we have used word/phrase duration
and various word/phrase level statistics of features which in-
clude MFCC, voicing pitch, etc. Statistics used include quan-
tiles, mean, max, min, etc. In total we have extracted 6126
word/phrase level features for each word/phrase. The feature
set has been extracted using OpenSMILE [13] as used in [14].

5. Acoustic unit estimation approach
In this section, we describe the approach used to create the
acoustic units. A basic layout of the approach is shown in Fig.
1. The approach is iterative and the dimensionality of the fea-
ture space is increased progressively and in a greedy manner.

The algorithm is initialized with an empty feature vector.
In step one, we add a feature to the feature vector F . In the
second step, the K-Means [12] algorithm is run independently
for languages L1 and L2 and the encoding (AL1 and AL2 ) is
created for each language. Thirdly, the coding is evaluated us-
ing the MI and conditional entropy metric as defined in Sec. 3.
If the metric considered improves, the feature replaces the last
feature added in F . If all features described in 4 are exhausted,
we increase the dimensionality of F and go to step one.

6. Experimental setup
For experimenting with the emphasis transfer problem, we run
the algorithm described in Sec. 5 in different setups. First, we
run the algorithm by maximizing the mutual information. Then,
we run the algorithm by maximizing the mutual information
between the cross-lingual acoustic representations and the em-
phasis transfer at each step and at the same time minimizing the
entropy so that we include as much information about the par-
alinguistic cue transfer but also find a representation that will

3484



Language   L1  

Language   L2  

 

Features Pool 
 

K means 

K means 

I(A,Y) 
H(AL1 |AL2 ) 

Selection 

 

Output 
 

AL1 

AL2 

xL1 

xL1 

Figure 1: The iterative approach used to find the best acoustic
representation for the acoustic cues transfered.

minimize the coding prediction error. In addition, as described
in Sec. 4, we used the mean power and duration of the signal to
create a representation and form a baseline to evaluate the effi-
cacy of our approach. To perform this optimization, we split the
data set into two parts one for training and one for testing with
half of the data in each set. The optimization has been run on
the training set and we report the results on the testing set. Since
the acoustic representations are created on the training set, we
assign to the testing feature vector the closest code as defined
by its cluster center.

Finally, we repeated the experiments for coding schemes
with vocabulary size of 2, 4 and 8 codes in each language. For
computational purposes, we run the experiments until at maxi-
mum 10 features are added or stopped if no more features can
be added to improve the metrics considered.

7. Results and Discussion
In this section, we analyze the results of the computational
approach to find appropriate representations for the English-
Spanish pair. Fig. 2 shows the value of mutual information
(MI) between the acoustic representations in English and Span-
ish and the transfer of emphasis. Results show that the amount
of information transfered increases when increasing the number
of tokens the acoustic representation is composed. Adding the
duration to the power baseline (Power+Dur) can increase the
information transfered in the English-Spanish bilingual pair.

Furthermore, when we maximize the mutual information
(I(A, Y )) the approach can identify acoustic representations
that yield up to 0.07 MI measure higher than power and du-
ration together depending on the number of tokens considered
which in-turn implies that more information is transfered. Us-
ing the Wilcox rank test and breaking the test set into 45 subsets,
we find that the results are significant at p-values less than 10−8

for both the comparisons.

In applications such as speech translation, it is impor-
tant not only to ensure that the representations ensure maxi-
mal information transfer, but yield as minimal ambiguity as
possible to enable correct translation with low uncertainty.
For this reason, we repeated our experiments by maximizing
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Figure 2: This figure shows the mutual information I(A, Y ) of
the acoustic representations for emphasis transfer for different
approaches and different number of tokens.

the mutual information (I(A, Y )) and minimizing the entropy
(H(ALS |ALE ) and vice versa for Spanish→English) at each
step of the algorithm.

Results in Fig. 2 show that such joint optimization yields
less information carried in the bilingual English-Spanish pair
than optimizing only on mutual information (I(A, Y )) by up
to 0.05 depending on the number of tokens considered but still
more information than the baselines of up to 0.1 in terms of
mutual information.

In addition, while adding duration to the baseline increased
the mutual information, in three cases it increased the ambiguity
of the coding scheme only when discretizing into two represen-
tations. Also, as shown in Fig. 3 the computational approach to
create acoustic representations yielded codes with much lower
ambiguity measured in terms of conditional entropy. In par-
ticular, this dual metric can lower the conditional entropy by
up to 0.7 points depending on the number of tokens considered.
The improvements in conditional entropy are consistent for both
sides of the mapping of the acoustic information for all numbers
of tokens considered and results are significant at p-values less
than 10−8 for all cases.

While optimizing only on MI, the conditional entropy re-
mains very close to the baseline but with much more cross-
lingual information carried in the representation.

8. Conclusion
In this work, we presented a computational approach to con-
struct a cross-lingua representation for acoustic cues transfer
and, in particular for the emphasis transfer. We have presented a
mapping from the acoustic feature space to a discrete set of units
using an iterative procedure in which at each step the mutual in-
formation is maximized. This method can potentially lead to an
approach to learn cross-lingual information across speech-to-
speech (S2S) components that can be used beyond the pipelined
architecture of S2S by exploiting a diverse set of features.
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Figure 3: This figure shows the conditional entropy for the En-
glish to Spanish (a) and Spanish to English (b) translation of the
acoustic representations with different approaches for different
number of tokens.

Furthermore, for applications such as speech translation
that require the resulting acoustic units to have low uncertainty
for the prediction while simultaneously transferring as much in-
formation as possible, we added another condition to the algo-
rithm to jointly maximize mutual information and minimize the
conditional entropy of the prediction. Our results indicate that
for applications in which the information transfered is important
we can achieve MI up to three times higher than the baseline
considered.

In addition, for applications requiring not only the maxi-
mum amount of information transfered but also low ambiguity
of the coding scheme, the joint maximization of mutual infor-
mation and conditional entropy yielded reductions in terms of
conditional entropy of up to 3.5 times for the English Spanish
bilingual translation.

For future work, we intend to collect and evaluate our ap-
proach on more speakers. In addition, we want to explore more
features sets that can be used in the approach and also improve
the approach with different optimization techniques to yield
higher mutual information (MI) and lower conditional entropy
as a measure of the coding scheme uncertainty. Also, additional
metrics can be useful for extracting different cross-lingual in-
formation useful in different S2S components.
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