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ABSTRACT

Identifying suitable sources of bilingual audio and text data is a

crucial part of statistical Speech to Speech (S2S) research and de-

velopment. Movies, often dubbed in other languages, offer a good

source for this purpose; but not all data are directly usable because

of noise and other audio condition differences. Hence, automati-

cally selecting the bilingual audio data that are suitable for anal-

ysis, and training S2S systems for specific environments becomes

crucial. In this work, we extract bilingual speech segments from

movies and aim at classifying segments as clean speech or speech

with background noise (i.e. music, babble noise etc.). We examine

various features in solving this problem and our best performing

method delivers accuracy up to 87% in discriminating clean and

noisy speech in bilingual data.

Index Terms— bilingual movie audio clean speech detection,

audio segmentation

1. INTRODUCTION

Due to the statistical nature of Speech-to-speech (S2S) translation

systems, bilingual data have played a significant role in their re-

search and development, for example, bilingual parallel audio has

been shown to be important for the translation of paralinguistic cues

[1, 2, 3]. Researchers have focused on both manual and automatic

data collection approaches for the design of S2S translators. Such

bilingual data not only include spoken utterances in the source lan-

guage along with their interpretation in the target language but also

text translation of speech transcriptions. Automatically acquired

data could contain speech segments that are not suitable due to low

Signal to Noise Ratio (SNR) levels and, thus, reduces the useful-

ness of the data. For this reason, additional research is needed to

automatically distinguish low SNR from high SNR bilingual speech

signals which that are suitable for S2S translation design.

Examples of manually obtained bilingual speech and transcript

data include the Europarl [4] and the news commentary corpus1.

In addition to manually collected data, many approaches have been

proposed to automatically collect and align bilingual transcriptions.

1Made available for the workshop shared task

http://www.statmt.org/wmt10/

A key component of the automatic algorithms was to model the

variability and noise in the alignment of bilingual transcriptions.

Such algorithms have been often used to align movie subtitles. For

example, Tsiartas et al. [5] focused on aligning speech in movies

with subtitles. Sarikaya et al. [6] selected subsets of bilingual subti-

tle transcriptions by removing noisy pairs and showed BLUE score

[7] improvements on a large-scale S2S system.

Bilingual text transcriptions lack additional information that

resides in the audio that may contain important linguistic (e.g.,

prosody) and paralinguistic (e.g., affect) information for modeling

speech translations. Hence, beyond text bilingual data, researchers

have been collecting audio bilingual data such as, for example, the

DARPA TRANSTAC domain data [8] and the Basic Travel Expres-

sion Corpus (BTEC) [9]. In addition to manually collected audio,

researchers have proposed approaches to extract bilingual audio

data automatically from existing sources. In our past work [10],

we had proposed a method to segment bilingual audio from movies

and align the segments with the corresponding subtitles.

However, the aforomemntioned method did not distinguish be-

tween the quality of bilingual speech (clean or noisy) but instead

focused if detecting just the presence of speech. Movie data contain

a wide variation in the audio quality and, hence, automatic data se-

lection becomes critical. For this classification task, we use movies

that are dubbed in at least two languages and propose an approach

to classify the bilingual parallel audio as noisy segments of speech

(i.e, background music, gunshots etc) or clean speech. To solve

this problem, we exploit the fact that the noise in the two channels

is acoustically correlated but the speech signals are not correlated

since they are in two different languages. For this purpose, we de-

sign a set of diverse features and evaluate their performance on a

data set annotated by humans.

This paper is structured as follows. In section 2, we present

the collected data used in this work. In section 3, we describe the

proposed features used in discriminating low and high SNR speech

regions. In section 4, we present the experimental setup. Section 5

discusses the experiments and results of our approach and, finally,

in section 6, we summarize the results of this work and provide

some future directions.
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2. DATA COLLECTION

For the purpose of these experiments, we collected 5 movies con-

taining audio and subtitles in English and French and we down-mix

all channels to one channel for each language. Then, we use the

approach proposed in [10] to segment the parallel streams of audio

into multiple aligned bilingual speech segments. This generates a

corpus of 490 bilingual segments. An overview of the the audio

segmentation and alignment tagging is shown in Fig. 1. These were

manually tagged into clean and noisy bilingual speech audio. In the

next stage of annotation, we classified segments that contained no

background noise as clean bilingual speech and segments with even

some noise as noisy bilingual speech. Overall, we obtained 27%

clean English-French speech segments with the other 73% tagged

as noisy speech segments.

Fig. 1. An illustration of the automatically segmented bilin-

gual audio streams for English and French. Ssi and Sei de-

note the begin and end sample indices for the ith segment

3. PROPOSED FEATURES

In this section, we aim to design the features that capture informa-

tion that discriminate bilingual noisy and clean speech segments

based on the SNR levels. To design these features, we need to un-

derstand some important properties of the bilingual speech audio.

Firstly, the bilingual segment pair contains speech in two different

languages in two separate signals. The speech signal may or may

not contain noise. Noise can be background music, background

babble noise and in general any non-speech audio signal including

noise that can be much smaller in duration than the speech seg-

ment. Acoustically, noise is similar in both audio streams. In some

cases, noise in one audio stream can be a shifted, scaled and maybe

filtered version of the noise in the other audio stream. Using the

above-mentioned properties, we construct features that capture the

spectral correlation (due to the acoustic similarity) between the two

audio streams. In addition, we use the first audio stream to predict

the second audio stream, thus, estimate the noise and measure the

energy ratio between the estimated noise and both audio streams.

3.1. Spectral correlation (SC)

In order to approximate the acoustic and perceptual proximity of the

bilingual audio streams, we use the mel-frequency cepstral coeffi-

cients (MFCC) [11] to represent the audio signal. Suppose for the

ith segment there are Ri frames. To define the spectral correlation,

we first concatenate Ri consecutive frames’ L-dimensional MFCC

feature vector (excluding the DC coefficient). Thus, for each seg-

ment, say segment i, we have two vectors (one for each language)

of dimension Ii = RiL. Hence, we define the two Ii MFCC fea-

ture vectors as CL1
(i) and CL2

(i) for the ith segment. Using these

two vectors, we compute the correlation coefficient. The reason we

are using the spectral correlation is to capture the spectral similarity

of the streams while keeping the feature robust to any scalings and

short-term shifting of any of the two audio streams.

Hence, the Spectral Correlation (SC) of the ith segment is de-

fined as:

SC(i) =

Ii
∑

j=1

(

CL1
(i, j) − C̄L1

(i)
) (

CL2
(i, j) − C̄L2

(i)
)

√

√

√

√
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where the mean is defined as: C̄L1
(i) =

Ii
∑

j=1

(CL1
(i, j))

Ii

Thus, by definition, the closer the acoustic similarity of the two

vectors is, the closer SC(i) will be to 1. Thus, a high value of

SC(i) indicates that similar noise in the two streams is significantly

more than the speech signals.

3.2. Noise to Speech and Noise Ratio (NSNR)

The Noise to Speech and Noise Ratio (NSNR) aims to capture the

ratio between the noise that is common in the two channels and the

amount speech that is present. For each segment separately, we de-

note the audio of language L1 and L2 as SL1
and SL1

respectively.

Moreover, we assume the following signal model for the audio sig-

nals SL1
and SL1

: SL1
= XL1

+N and SL2
= h ∗XL2

+ h ∗N
where * represents the convolution operator. XL1

and XL2
are the

speech signals in the audio streams of language L1 and L2 respec-

tively. N is the noise in the audio stream of L1 and h is a filter.

In addition, we assume XL1
, XL2

and N are uncorrelated. To

verify this uncorrelated assumption, we computed the correlation

coefficient between such signals and we found that the correlation

coefficient is very close to 0 (The average correlation coefficient is

of the order 10−4). We define NSNR for the ith segment as:

NSNR
△

=
|E {(h ∗ SL1

)SL2
} |

E {(h ∗ SL1
+ SL2

)2}

=

∣

∣E
{

UC + (h ∗N)2
}∣

∣

E {(SSN + 4UC − 2(h ∗XL1
)(h ∗XL2

)}

=

∣

∣E
{

(h ∗N)2
}∣

∣

E {SSN}

where SSN = (h ∗XL1
)2 + (h ∗XL2

)2 + (2h ∗N)2
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UC = (h∗XL1
)(h∗XL2

)+(h∗XL1
)(h∗N)+(h∗N)XL2

and E{UC} = 0 because XL1
, XL2

and N are uncorrelated.

For signal X of size K, E{X} =
∑

j X(j)

K

The above expansion and analysis of the NSNR feature reveal

that NSNR takes values closer to 0 when the SNR is very high in

both audio streams. On the other hand, NSNR takes values closer

to 1 if SNR is very low. From the definition of the NSNR, we

need to know SL1
, SL2

and h. SL1
and SL2

are directly known

from the data, since they are simply the time domain samples of

each bilingual audio segment. However, the filter h is unknown

and, thus, we need to estimate h from the data for each bilingual

segment separately.

3.3. Filter estimation

To estimate the filter h, we propose two approaches. The first ap-

proach is simplistic and faster and assumes that the filter acts on

the signal by scaling and shifting it. The second approach tries to

estimate a time-varying Least Mean Squares (LMS) filter using the

normalized LMS [12] approach.

3.3.1. Scaling and Shifting Filter (SSF)

In this case, the assumption is that the filter h is only shifting and

scaling the signal. To estimate this signal, we use regions in which

there is only noise. Such regions are returned by the algorithm de-

scribed in [10]. The segments between consecutive speech regions

are expected to be noise only. For example, the ith segment has

a left and right noise-only region. As Fig. 1 shows the left noisy

region is between Sei−1
and Ssi and the right noisy region of seg-

ment i is between Sei and Ssi+1
.

Now, to compute h using the SSF estimation, we first compute

the correlation coefficient for the noisy regions before and after the

speech segment by varying the shift index M as follows:
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∑
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+M

V
L1

j−MV
L2

j

√

√

√

√

√

Ssi
∑

j=Sei−1
+M

(

V
L1

j−M

)2
Ssi
∑

j=Sei−1

(

V
L2

j

)2

and

CCafter(i,M) =

Ssi+1
∑

j=Sei
+M

V
L1

j−MV
L2

j

√

√

√

√

√

Ssi+1
∑

j=Sei
+M

(

V
L1

j−M

)2
Ssi+1
∑

j=Sei

(

V
L2

j

)2

where V
Lk
j = SLk

(j)− S̄Lk
(j)

We define the maximum correlation coefficient by

MCC(i) = max(max
M

(CCleft(i,M))max
M

(CCright(i,M)))

The optimal shift (delay of h) for the ith segment is the value

M that corresponds to the MCC(i) value. To compute the scale,

we select the noise region (left or right) which corresponds to

MCC(i) value. Then, the scale factor is computed as the ratio of

the energy between the noisy region L1 and the noisy region L2.

Thus, we construct h and compute NSNR.

3.3.2. Least Mean Squares Filter (LMSF)

In this case, we relax the assumptions of h and we let h to be any

filter. To estimate the filter, we use the normalized LMS algorithm

as described in [12]. Note at this point that we include the left and

right noise regions of SL1
and SL2

in the input and target signals to

get better estimates of the filter h. We denote the extended signals

as SNL1
and SNL2

. Since at each step of LMS we are minimiz-

ing the distance between SNL1
and SNL2

, the filter will be such

that SNL1
will track SNL2

. Ideally, the error of the LMS will be

h ∗XL2
and ,thus, the output will be h ∗SNL1

. To define the itera-

tive Normalized LMS, we need to define first the truncated versions

of SNL1
and SNL2

. We define SNT L1
(n) the truncated signal

starting at sample n. The signal is truncated to have length equal to

h and n is used to shift the truncated signal. The input and target

signals to Normalized LMS are SNT L1
and SNT L2

respectively.

Next, the iterative Normalized LMS to estimate h in the mth + 1
iteration is performed in the following manner:

h
m+1 = h

m +
µ(SNT L2

− hm˙SNT L1
)˙SNT L1

||SNT L1
||2

After finding h, we use h, SL1
and SL2

to compute NSNR.

4. EXPERIMENTAL SETUP

To identify, align and segment speech and noisy speech regions, we

used the algorithm described in [10]. Furthermore, we have used

the same parameters values optimized in [10], since we are working

on the same data set.

After getting the segments, we extracted the various features

described in section 3. For the computation of SC, we computed

12 MFCCs (excluding the DC coefficient). For computing the filter

h using the SSF method, we have searchedM in the range -800:800

and, thus, searching correlations of 1601 values which means we

are searching for the best shift within 100ms in a 16kHz audio sig-

nal. This is a reasonable assumption given the grounding of the

audio channel to the video stream; additionally, this helps in con-

straining the computational cost.

Moreover, using LMSF to estimate h, we had to optimize the

learning rate, µ, and filter size, |h|. On a development set, by us-

ing grid search we picked the parameters that maximize the average

K-Nearest Neighbor K-NN performance for K = 1−20. We com-

puted the performance for µ = [0.1 0.01 0.001 0.0001] and filter

size |h| = [30 80 250 800]. We found that the average K-NN per-

formance was maximized for a filter size of 80 and learning rate

µ = 0.001. To get better estimates of the h filters for each bilin-

gual segment, we run two iterations over the same segment. This

helps the Normalized LMS algorithm to converge if it did not con-

verge during the first iteration. Of course, more iterations one runs,

the better the estimate and convergence of the filter; however, extra

iterations over the same segments increase the computational cost

significantly.
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In all experiments that K-NN is involved, we used Mahalanobis

[13] distance as a distance function. Also, in order to strengthen the

results of our work, we run a 5-fold cross-validation in all experi-

ments. The split of train/test is 60%/40% and the results reported

are the average of the folds.

5. EXPERIMENTS, RESULTS AND DISCUSSION
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Fig. 2. This figure shows the K-NN classifier versus the ac-

curacies by varying K and combining various features.

Fig. 2 shows the performance of the features considered namely

the SC feature, NSNR, and the Maximum Cross Correlation (MCC)

value. In addition, we used various combinations of features to test,

understand and verify which features contain complementary infor-

mation. Using the features isolated, NSNR and SC have similar

(75%-80%) performance across different values of K. However,

it is interesting to observe that by combining the NSNR and SC

features, we see an increase in classification accuracy. This sug-

gests that these two features contain complementary information.

While the latter contains information about spectral similarity and

totally ignores the short-term phase differences and amplitude re-

lated information, the former only takes into account phase shifts

and scalings into computing the similarity of the two signals. In-

cluding all the features in the classifier, the selection accuracy is

83%. While accuracy represents an operating point closer to the

priors of the data, it is interesting to note that at Equal Error Rate

(EER) the error for NSNR is much lower than the SC and MCC

features (32%, 38% and 37% respectively). The experiment with

the lower EER (30%) was when combined all features. All EER

results correspond to K = 11 of KNN which is the optimal point

of the development set.

Since the NSNR feature depends on the accurate estimation

of h, it is interesting to compare the performance of different

approaches in estimating h and, in addition, we consider the per-

formance of different combinations of features using SC, NSNR,

NSNR with least means squares filter estimation (LMSF) and

(LMSF)-Extended in which we are using more iterations to es-

timate the filter h. For the (LMSF)-Extended, we are using 10

iterations over each segment for estimating each time the filter h.

As shown in Fig. 3, the filter estimated with (LMSF)-Extended

gives better convergence characteristics with the highest perfor-

mance among all features. It is interesting to see that by combining

NSNR(LMSF)-Extended with NSNR(SSF), SC and MCC, we get

the best performance (84%-87%). This fact suggests that those fea-

tures complement some missing information from NSNR(LMSF)-

Extended. Also, due to the computational costs to estimate higher

order filters for the least means square filter (i.e, the size of filter

|h|), we did not experiment with filters higher than 50ms. This

might be one reason that longer term information is not captured

by NSNR(LMSF) features. The results also suggest that some of

that information is captured by the the rest of the features namely

NSNR(SSF), SC and MCC.

Overall, our method depends on a set of training data so that

the algorithm learns from human annotations. The results indicate

that the features provide discrimination up to 87% using the KNN

[14] classifier for the data set considered. In addition, the NSNR

features which are motivated by Signal-to-Noise ratio ideas have

been the best performing.
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Fig. 3. This figure shows the K-NN classifier versus the accu-

racies by varying K and combining various features. In par-

ticular, the main focus is to compare different approaches in

estimating the filter h which relates the source with the target

noise.

6. CONCLUSIONS AND FUTURE WORK

In this work, we focus on identifying clean bilingual speech signals

by exploiting the relation between the background noise in two au-

dio streams. We proposed various features to capture this informa-

tion. The first feature captures the spectral correlation (SC) of the

bilingual audio streams and aims to measure their relationship by

spectral similarity. The second feature, called the Noise to Speech

and Noise Ratio (NSNR) aims to model the relation using a signal

plus noise model of two audio streams. NSNR requires an estima-

tion of a filter h and we have proposed two methods to estimate

h which vary in speed and performance. Our best performing ap-

proach delivers accuracies up to 87% in classifying clean and noisy

speech.

For future work, we aim to use phonetic information in each

language to improve the performance of identifying clean and noisy

speech regions. We also want to employ an automatic speech rec-

ognizer to align the text with the high SNR speech signals.
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